A wavelet based space-time adaptive numerical method for partial differential equations

E. Bacry; S. Mallat; G. Papanicolaou

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1992)

  • Volume: 26, Issue: 7, page 793-834
  • ISSN: 0764-583X

How to cite

top

Bacry, E., Mallat, S., and Papanicolaou, G.. "A wavelet based space-time adaptive numerical method for partial differential equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 26.7 (1992): 793-834. <http://eudml.org/doc/193685>.

@article{Bacry1992,
author = {Bacry, E., Mallat, S., Papanicolaou, G.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {evolution equations; time discretization; space-time adaptive algorithm; wavelet orthonormal bases; heat equation; linear advection equation; Burgers equation; stability; numerical results},
language = {eng},
number = {7},
pages = {793-834},
publisher = {Dunod},
title = {A wavelet based space-time adaptive numerical method for partial differential equations},
url = {http://eudml.org/doc/193685},
volume = {26},
year = {1992},
}

TY - JOUR
AU - Bacry, E.
AU - Mallat, S.
AU - Papanicolaou, G.
TI - A wavelet based space-time adaptive numerical method for partial differential equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1992
PB - Dunod
VL - 26
IS - 7
SP - 793
EP - 834
LA - eng
KW - evolution equations; time discretization; space-time adaptive algorithm; wavelet orthonormal bases; heat equation; linear advection equation; Burgers equation; stability; numerical results
UR - http://eudml.org/doc/193685
ER -

References

top
  1. [1] R. BANK, A multilevel iterative method for nonlinear elliptic equations, Elliptic Problem Solvers, M. Schultz, Ed., p. 1, Academic Press, New York, 1981. Zbl0467.65054
  2. [2] G. BATTLE, A block spin construction of ondelettes, Comm. Math. Phys., 110, p. 601, 1987. MR895218
  3. [3] M. BERGER and P. COLELLA, Local adaptive mesh refinement for shock hydrodynamics, J. Comp. Phys., 82 pp. 64-84, 1989. Zbl0665.76070
  4. [4] M. BERGER and J. OLIGER, Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations, J. Comp. Phys., 53, No. 3, pp. 484-512, 1984. Zbl0536.65071MR739112
  5. [5] G. BEYLKIN, On the representation of operators in bases of compactly supported wavelets, Proceedings of the École sur des Problèmes non Linéaires Appliqués, INRIA, Paris, June 1991. Zbl0766.65007MR1191143
  6. [6] G. BEYLKIN, R. COFIMAN and V. ROKHLIN, Fast wavelet transform and numerical algorithms, Yale University Tech. Report YALE/DCS/RR-696, August 1989. 
  7. [7] A. BRANDT, Math. Comp., 31, p. 333, 1977, New York, 1981. Zbl0373.65054MR431719
  8. [8] I. DAUBECHIES, Orthonormal bases of compactly supported wavelets, Comm. in Pure Apll. Math., 41, pp. 909-996, November 1988. Zbl0644.42026MR951745
  9. [9] B. LE MESURIER, G. PAPANICOLAOU, G. SULEM and P. SULEM, Local structure of the self focusing singularity of the nonlinear Schroedinger equation, Physica D, 32, pp. 210-226, 1988. Zbl0694.35206MR969030
  10. [10] P. G. LEMARIE, Ondelettes à localisation exponentielles, J. Math. Pures Appl., 1988. Zbl0758.42020MR964171
  11. [11] J. LIANDRAT and Ph. TCHAMITCHIAN, Resolution of the 1D regularized Burgers equation using a spatial wavelet approximation, NASA Report, ICASE Report No. 90-83, Dec. 1990. Zbl0917.65117
  12. [12] S. MALLAT, Multiresolution approximation and wavelet orthonormal bases of L2, Trans. Amer. Math. Soc. 315, pp. 69-87, Sept. 1989. Zbl0686.42018MR1008470
  13. [13] S. MALLAT, A theory for multiresolution signal decomposition : the wavelet representation, IEEE Trans. Pattern Anal. Machine Intell., 11, No. 7, pp. 674-693, July 1989. Zbl0709.94650
  14. [14] Y. MEYER, Ondelettes et opérateurs, Hermann, Paris 1990. Zbl0694.41037MR1085487
  15. [15] Y. MEYER, Ondelettes orthogonales sur un interval, preprint CEREMADE, Université Paris Dauphine, 1991. MR1133374
  16. [16] J. STROMBERG, A modified Franklin system and higher-order Systems of Rn as unconditional bases for Hardy spaces, Conference in Harmonie Analysis in Honor of A. Zygmund, 2, pp 475-493, eds. W. Beckner et al., Wadsworth Math. Series. Zbl0521.46011
  17. [17] J.-C. XU and W.-C. SHANN, Galerkin-wavelets Methods for Two-point Boundary Value Problems, preprint, May 1991. Zbl0771.65050
  18. [18] H. YSERENTANT, On the multi-level splittmg of finite element spaces, Numer. Math., 49, pp. 379-412, 1986. Zbl0608.65065

NotesEmbed ?

top

You must be logged in to post comments.