A wavelet based space-time adaptive numerical method for partial differential equations

E. Bacry; S. Mallat; G. Papanicolaou

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1992)

  • Volume: 26, Issue: 7, page 793-834
  • ISSN: 0764-583X

How to cite

top

Bacry, E., Mallat, S., and Papanicolaou, G.. "A wavelet based space-time adaptive numerical method for partial differential equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 26.7 (1992): 793-834. <http://eudml.org/doc/193685>.

@article{Bacry1992,
author = {Bacry, E., Mallat, S., Papanicolaou, G.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {evolution equations; time discretization; space-time adaptive algorithm; wavelet orthonormal bases; heat equation; linear advection equation; Burgers equation; stability; numerical results},
language = {eng},
number = {7},
pages = {793-834},
publisher = {Dunod},
title = {A wavelet based space-time adaptive numerical method for partial differential equations},
url = {http://eudml.org/doc/193685},
volume = {26},
year = {1992},
}

TY - JOUR
AU - Bacry, E.
AU - Mallat, S.
AU - Papanicolaou, G.
TI - A wavelet based space-time adaptive numerical method for partial differential equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1992
PB - Dunod
VL - 26
IS - 7
SP - 793
EP - 834
LA - eng
KW - evolution equations; time discretization; space-time adaptive algorithm; wavelet orthonormal bases; heat equation; linear advection equation; Burgers equation; stability; numerical results
UR - http://eudml.org/doc/193685
ER -

References

top
  1. [1] R. BANK, A multilevel iterative method for nonlinear elliptic equations, Elliptic Problem Solvers, M. Schultz, Ed., p. 1, Academic Press, New York, 1981. Zbl0467.65054
  2. [2] G. BATTLE, A block spin construction of ondelettes, Comm. Math. Phys., 110, p. 601, 1987. MR895218
  3. [3] M. BERGER and P. COLELLA, Local adaptive mesh refinement for shock hydrodynamics, J. Comp. Phys., 82 pp. 64-84, 1989. Zbl0665.76070
  4. [4] M. BERGER and J. OLIGER, Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations, J. Comp. Phys., 53, No. 3, pp. 484-512, 1984. Zbl0536.65071MR739112
  5. [5] G. BEYLKIN, On the representation of operators in bases of compactly supported wavelets, Proceedings of the École sur des Problèmes non Linéaires Appliqués, INRIA, Paris, June 1991. Zbl0766.65007MR1191143
  6. [6] G. BEYLKIN, R. COFIMAN and V. ROKHLIN, Fast wavelet transform and numerical algorithms, Yale University Tech. Report YALE/DCS/RR-696, August 1989. 
  7. [7] A. BRANDT, Math. Comp., 31, p. 333, 1977, New York, 1981. Zbl0373.65054MR431719
  8. [8] I. DAUBECHIES, Orthonormal bases of compactly supported wavelets, Comm. in Pure Apll. Math., 41, pp. 909-996, November 1988. Zbl0644.42026MR951745
  9. [9] B. LE MESURIER, G. PAPANICOLAOU, G. SULEM and P. SULEM, Local structure of the self focusing singularity of the nonlinear Schroedinger equation, Physica D, 32, pp. 210-226, 1988. Zbl0694.35206MR969030
  10. [10] P. G. LEMARIE, Ondelettes à localisation exponentielles, J. Math. Pures Appl., 1988. Zbl0758.42020MR964171
  11. [11] J. LIANDRAT and Ph. TCHAMITCHIAN, Resolution of the 1D regularized Burgers equation using a spatial wavelet approximation, NASA Report, ICASE Report No. 90-83, Dec. 1990. Zbl0917.65117
  12. [12] S. MALLAT, Multiresolution approximation and wavelet orthonormal bases of L2, Trans. Amer. Math. Soc. 315, pp. 69-87, Sept. 1989. Zbl0686.42018MR1008470
  13. [13] S. MALLAT, A theory for multiresolution signal decomposition : the wavelet representation, IEEE Trans. Pattern Anal. Machine Intell., 11, No. 7, pp. 674-693, July 1989. Zbl0709.94650
  14. [14] Y. MEYER, Ondelettes et opérateurs, Hermann, Paris 1990. Zbl0694.41037MR1085487
  15. [15] Y. MEYER, Ondelettes orthogonales sur un interval, preprint CEREMADE, Université Paris Dauphine, 1991. MR1133374
  16. [16] J. STROMBERG, A modified Franklin system and higher-order Systems of Rn as unconditional bases for Hardy spaces, Conference in Harmonie Analysis in Honor of A. Zygmund, 2, pp 475-493, eds. W. Beckner et al., Wadsworth Math. Series. Zbl0521.46011
  17. [17] J.-C. XU and W.-C. SHANN, Galerkin-wavelets Methods for Two-point Boundary Value Problems, preprint, May 1991. Zbl0771.65050
  18. [18] H. YSERENTANT, On the multi-level splittmg of finite element spaces, Numer. Math., 49, pp. 379-412, 1986. Zbl0608.65065

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.