Mixed finite element methods for quasilinear second order elliptic problems : the p -version

F. A. Milner; M. Suri

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1992)

  • Volume: 26, Issue: 7, page 913-931
  • ISSN: 0764-583X

How to cite

top

Milner, F. A., and Suri, M.. "Mixed finite element methods for quasilinear second order elliptic problems : the $p$-version." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 26.7 (1992): 913-931. <http://eudml.org/doc/193690>.

@article{Milner1992,
author = {Milner, F. A., Suri, M.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {-version; quasilinear second order elliptic problems; error estimates; -version; convergence; finite element},
language = {eng},
number = {7},
pages = {913-931},
publisher = {Dunod},
title = {Mixed finite element methods for quasilinear second order elliptic problems : the $p$-version},
url = {http://eudml.org/doc/193690},
volume = {26},
year = {1992},
}

TY - JOUR
AU - Milner, F. A.
AU - Suri, M.
TI - Mixed finite element methods for quasilinear second order elliptic problems : the $p$-version
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1992
PB - Dunod
VL - 26
IS - 7
SP - 913
EP - 931
LA - eng
KW - -version; quasilinear second order elliptic problems; error estimates; -version; convergence; finite element
UR - http://eudml.org/doc/193690
ER -

References

top
  1. [1] I. BABUSKA, I. N. KATZ and B. SZABO, The p-version of the finite element method, SIAM Num. Anal., 18 (1981), pp. 515-545. Zbl0487.65059MR615529
  2. [2] J. Jr. DOUGLAS and J. E. ROBERTS, Global estimates for mixed methods for second order elliptic equations, Math. Comp., 44 (1985), pp. 39-52. Zbl0624.65109MR771029
  3. [3] F. A. MILNER, Mixed finite element methods for quasilinear second order elliptic problems, Math. Comp., 44 (1985), pp. 303-320. Zbl0567.65079MR777266
  4. [4] A. QUARTERONI, Some results of Bernstein and Jackson type for polynomial approximation in Lp spaces, Jap. J. Appl. Math., 1 (1984), pp. 173-181. Zbl0568.41006MR839312
  5. [5] P. A. RAVIART and J. M. THOMAS, A mixed finite element method for 2nd order elliptic problems, Proceed. Conf. on Mathematical aspects of finite elements methods, Lecture notes in mathematics, vol. 606, Springer-Verlag, Berlin, 1977, pp. 292-315. Zbl0362.65089MR483555
  6. [6] M. SURI, On the stability and convergence of higher order mixed finite element methods for second order elliptic problems, Math. Comp., 54 (1990), pp. 1-19. Zbl0687.65101MR990603
  7. [7] H. TRIEBEL, Interpolation Theory, Function Spaces, Differential Operators, North Holland, Amsterdam, 1978. Zbl0387.46032MR503903

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.