The p version of mixed finite element methods for parabolic problems

Sonia M. F. Garcia; Søren Jensen

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1997)

  • Volume: 31, Issue: 3, page 303-326
  • ISSN: 0764-583X

How to cite

top

Garcia, Sonia M. F., and Jensen, Søren. "The $p$ version of mixed finite element methods for parabolic problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 31.3 (1997): 303-326. <http://eudml.org/doc/193839>.

@article{Garcia1997,
author = {Garcia, Sonia M. F., Jensen, Søren},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = { version; error bounds; semidiscrete mixed finite element method; linear second order parabolic equation; stability; Raviart-Thomas projection},
language = {eng},
number = {3},
pages = {303-326},
publisher = {Dunod},
title = {The $p$ version of mixed finite element methods for parabolic problems},
url = {http://eudml.org/doc/193839},
volume = {31},
year = {1997},
}

TY - JOUR
AU - Garcia, Sonia M. F.
AU - Jensen, Søren
TI - The $p$ version of mixed finite element methods for parabolic problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1997
PB - Dunod
VL - 31
IS - 3
SP - 303
EP - 326
LA - eng
KW - version; error bounds; semidiscrete mixed finite element method; linear second order parabolic equation; stability; Raviart-Thomas projection
UR - http://eudml.org/doc/193839
ER -

References

top
  1. [1] I. BABUŠKA, 1971, Error bounds for the finite element method, Numer. Math., 16,322-333. Zbl0214.42001MR288971
  2. [2] F. BREZZI, 1974, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, RAIRO 8-R.2, 129-151. Zbl0338.90047MR365287
  3. [3] M. R. DORR, 1984, The approximation theory for the p-version of the finite element method, SIAM J. Numer. Anal., 21, 1180-1207. Zbl0572.65074MR765514
  4. [4] J. Jr. DOUGLAS and J. E. ROBERTS, 1982, Mixed finite element methods for second order elliptic problems, Mat. Applic. Comp., 1, 91-103. Zbl0482.65057MR667620
  5. [5] J. Jr. DOUGLAS and J. E. ROBERTS, 1985, Global estimates for mixed methods for second order elliptic equations, Math. Comp., 44, 39-52. Zbl0624.65109MR771029
  6. [6] S. M. F. GARCIA, 1994, Improved Error Estimates for Nonlinear Parabolic Equations - Continuous Time Case, Numer. Methods in PDEs, 10, 129-147. Zbl0792.65068MR1259214
  7. [7] S. Jensen, 1992, p-version of the mixed finite element method for Stokes-like problems, Comp. Meth. Appl. Mech. Eng., 101, 27-41. Zbl0778.76052MR1195577
  8. [8] S. JENSEN and M. VOGELIUS, 1990, Divergence stability in connection with the p version of the finite element method, RAIRO, Modélisation Math. Anal. Numér., 24-6, 737-764. Zbl0717.65085MR1080717
  9. [9] C. JOHNSON, Numerical solutions of partial differential equations by the finite element methods, Cambridge University Press, 1987. MR925005
  10. [10] C. JOHNSON and V. THOMÉE, 1981, Error estimates for some mixed finite element methods for parabolic type problems, RAIRO Anal. Numér., 15, 41-78. Zbl0476.65074MR610597
  11. [11] F. A. MlLNER and M. SURI, 1992, Mixed Finite Element Methods for Quasilinear Second Order Elliptic Problems : the p-version. RAIRO, Modélisation Math. Anal. Numér., 24-7, 913-931. Zbl0783.65076MR1199319
  12. [12] A. QUARTERONI, 1984, Some results of Bernstein and Jackson type for polynomial approximation in Lp spaces, Jap. J. Appl. Math., 1, 173-181. Zbl0568.41006MR839312
  13. [13] P.-A. RAVIART and J. M. THOMAS, 1977, A Mixed Finite Element Method for 2-nd Order Elliptic Equations, in Mathematical Aspects of Finite Element Methods, Lecture Notes in Mathematics, 606, ed. I. Galligani and E. Magenes, Springer, 292-315. Zbl0362.65089MR483555
  14. [14] G. SANSONE, Orthogonal Functions, Dover, Mineola, NY 1991 (orig. Interscience, 1959). Zbl0084.06106MR1118381
  15. [15] E. M. STEIN, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series vol. 30, Princeton University Press, NJ, 1970. Zbl0207.13501MR290095
  16. [16] M. SURI, 1990, On the stability and convergence of higher order mixed finite element methods for second order elliptic problems, Math. Comp., 54, 1-19. Zbl0687.65101MR990603
  17. [17] G. SZEGÖ, Orthogonal Polynomials, AMS Colloq. Publ. 23, 1933. Zbl0023.21505

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.