Semidiscrete and single step fully discrete finite element approximations for second order hyperbolic equations with nonsmooth solutions
- Volume: 27, Issue: 1, page 55-63
- ISSN: 0764-583X
Access Full Article
topHow to cite
topBales, L. A.. "Semidiscrete and single step fully discrete finite element approximations for second order hyperbolic equations with nonsmooth solutions." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 27.1 (1993): 55-63. <http://eudml.org/doc/193694>.
@article{Bales1993,
author = {Bales, L. A.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {nonsmooth solutions; finite element; initial-boundary value problem; second order hyperbolic equation; semidiscrete approximations; fully discrete approximations; convergence estimates; negative norms},
language = {eng},
number = {1},
pages = {55-63},
publisher = {Dunod},
title = {Semidiscrete and single step fully discrete finite element approximations for second order hyperbolic equations with nonsmooth solutions},
url = {http://eudml.org/doc/193694},
volume = {27},
year = {1993},
}
TY - JOUR
AU - Bales, L. A.
TI - Semidiscrete and single step fully discrete finite element approximations for second order hyperbolic equations with nonsmooth solutions
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1993
PB - Dunod
VL - 27
IS - 1
SP - 55
EP - 63
LA - eng
KW - nonsmooth solutions; finite element; initial-boundary value problem; second order hyperbolic equation; semidiscrete approximations; fully discrete approximations; convergence estimates; negative norms
UR - http://eudml.org/doc/193694
ER -
References
top- [1] G. A. BAKER and J. H. BRAMBLESemidiscrete and single step fully discrete approximations for second order hyperbolic equations, RAIRO Modél. Math. Anal. Numer., V. 13, 1979, pp. 75-100. Zbl0405.65057MR533876
- [2] L. A. BALES, Finite element computations for second order hyperbolic equations with nonsmooth solutions, Comm. in App. Num. Meth., V. 5, 1989, pp. 383-388. Zbl0679.65086
- [3] J. H. BRAMBLE and A. H. SCHATZ, Higher order local accuracy by averaging in the finite element method, Math. Comp., V. 31, 1977, pp. 94-111. Zbl0353.65064MR431744
- [4] T. GEVECI, On the convergence of Galerkin approximation schemas for second-order hyperbolic equations in energy and negative norms, Math. Comp., V. 42, 1984, pp.393-415. Zbl0553.65082MR736443
- [5] C. JOHNSON and U. NAVERT, An analysis of some finite element methods for advection-diffusion problems, in Analytical and Numerical Approaches to Asymptotic Problems in Analysis, L. S. Frank and A. van der Sluis (Eds), North-Holland, 1981, pp. 99-116. Zbl0455.76081MR605502
- [6] P. D. LAX and M. S. MOCK, The computation of discontinuous solutions of linear hyperbolic equations, Comm Pure Appl. Math., V. 31, 1978, pp. 423-430. Zbl0362.65075MR468216
- [7] V. THOMEE, Galerkin Finite Methods for Parabolic Problems, Springer-Verlag, 1984. Zbl0528.65052MR744045
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.