Semidiscrete and single step fully discrete finite element approximations for second order hyperbolic equations with nonsmooth solutions

L. A. Bales

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1993)

  • Volume: 27, Issue: 1, page 55-63
  • ISSN: 0764-583X

How to cite

top

Bales, L. A.. "Semidiscrete and single step fully discrete finite element approximations for second order hyperbolic equations with nonsmooth solutions." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 27.1 (1993): 55-63. <http://eudml.org/doc/193694>.

@article{Bales1993,
author = {Bales, L. A.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {nonsmooth solutions; finite element; initial-boundary value problem; second order hyperbolic equation; semidiscrete approximations; fully discrete approximations; convergence estimates; negative norms},
language = {eng},
number = {1},
pages = {55-63},
publisher = {Dunod},
title = {Semidiscrete and single step fully discrete finite element approximations for second order hyperbolic equations with nonsmooth solutions},
url = {http://eudml.org/doc/193694},
volume = {27},
year = {1993},
}

TY - JOUR
AU - Bales, L. A.
TI - Semidiscrete and single step fully discrete finite element approximations for second order hyperbolic equations with nonsmooth solutions
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1993
PB - Dunod
VL - 27
IS - 1
SP - 55
EP - 63
LA - eng
KW - nonsmooth solutions; finite element; initial-boundary value problem; second order hyperbolic equation; semidiscrete approximations; fully discrete approximations; convergence estimates; negative norms
UR - http://eudml.org/doc/193694
ER -

References

top
  1. [1] G. A. BAKER and J. H. BRAMBLESemidiscrete and single step fully discrete approximations for second order hyperbolic equations, RAIRO Modél. Math. Anal. Numer., V. 13, 1979, pp. 75-100. Zbl0405.65057MR533876
  2. [2] L. A. BALES, Finite element computations for second order hyperbolic equations with nonsmooth solutions, Comm. in App. Num. Meth., V. 5, 1989, pp. 383-388. Zbl0679.65086
  3. [3] J. H. BRAMBLE and A. H. SCHATZ, Higher order local accuracy by averaging in the finite element method, Math. Comp., V. 31, 1977, pp. 94-111. Zbl0353.65064MR431744
  4. [4] T. GEVECI, On the convergence of Galerkin approximation schemas for second-order hyperbolic equations in energy and negative norms, Math. Comp., V. 42, 1984, pp.393-415. Zbl0553.65082MR736443
  5. [5] C. JOHNSON and U. NAVERT, An analysis of some finite element methods for advection-diffusion problems, in Analytical and Numerical Approaches to Asymptotic Problems in Analysis, L. S. Frank and A. van der Sluis (Eds), North-Holland, 1981, pp. 99-116. Zbl0455.76081MR605502
  6. [6] P. D. LAX and M. S. MOCK, The computation of discontinuous solutions of linear hyperbolic equations, Comm Pure Appl. Math., V. 31, 1978, pp. 423-430. Zbl0362.65075MR468216
  7. [7] V. THOMEE, Galerkin Finite Methods for Parabolic Problems, Springer-Verlag, 1984. Zbl0528.65052MR744045

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.