Homogenization and effective properties of plates weakened by partially penetrating fissures : convergence and duality

J. J. Telega

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1993)

  • Volume: 27, Issue: 4, page 421-456
  • ISSN: 0764-583X

How to cite

top

Telega, J. J.. "Homogenization and effective properties of plates weakened by partially penetrating fissures : convergence and duality." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 27.4 (1993): 421-456. <http://eudml.org/doc/193709>.

@article{Telega1993,
author = {Telega, J. J.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {asymptotic method; method of epi-convergence; dual homogenization; homogenized complementary potential},
language = {eng},
number = {4},
pages = {421-456},
publisher = {Dunod},
title = {Homogenization and effective properties of plates weakened by partially penetrating fissures : convergence and duality},
url = {http://eudml.org/doc/193709},
volume = {27},
year = {1993},
}

TY - JOUR
AU - Telega, J. J.
TI - Homogenization and effective properties of plates weakened by partially penetrating fissures : convergence and duality
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1993
PB - Dunod
VL - 27
IS - 4
SP - 421
EP - 456
LA - eng
KW - asymptotic method; method of epi-convergence; dual homogenization; homogenized complementary potential
UR - http://eudml.org/doc/193709
ER -

References

top
  1. [1] T. LEWIŃSKI, J. J. TELEGA, Homogenization and effective properties of plates weakened by partially penetrating fissures : asymptotic analysis, Int. J. Eng. Sci., 9, 1991, pp. 1129-1155. Zbl0759.73004MR1124050
  2. [2] J. J. TELEGA, Homogenization of fissured elastic solids in the presence of unilateral conditions and friction, Comp. mech., 6, 1990, pp. 109-127. Zbl0723.73010
  3. [3] H. ATTOUCH, Variational Convergence for Functions and Operators, Pitman, London, 1984. Zbl0561.49012MR773850
  4. [4] J. J. TELEGA, Variational methods and convex analysis in contact problems and homogenization, IFTR Reports No. 38/90, Warsaw 1990, in Polish. 
  5. [5] H. ATTOUCH, Variational properties of epi-convergence. Applications of limit analysis problems in mechanics and duality theory, in : Multifunctions and Integrands, ed. by G. Salinetti, Lecture Notes in Mathematics, Vol.1091, 1984, pp. 80-104, Springer-Verlag, Berlin. MR785577
  6. [6] H. ATTOUCH, Epi-convergence and duality. Convergence of sequence ofmarginal and Lagrangian functions. Applications to homogenization problemsin mechanics, Publications AVAMAC, Université de Perpignan, No. 84-11, 1984. Zbl0588.49015
  7. [7] G. BUTTAZZO, Semicontinuity, Relaxation and Integral Representation Problems in the Calculus of Variations, Pitman, London, 1988. Zbl0669.49005
  8. [8] G. BOUCHITTÉ, Calcul des variations en cadre non réflexif. Représentation et relaxation de fonctionnelles intégrales sur un espace de mesures. Application enplasticité et homogénéisation, Thèse d'Etat, Université de Perpignan, 1987. 
  9. [9] A. AMBROSETTI, C. SBORDONE, Г-convergenza e G-convergenza per problemi di tipo ellitico, Boll. Un. Mat. Ital.,13-A, 1976, pp. 352-362. Zbl0345.49004MR487703
  10. [10] P. J. LAURENT, Approximation et Optimisation, Herrmann, Paris, 1972. Zbl0238.90058MR467080
  11. [11] H. ATTOUCH, D. AZÉ, R. J. B. WETS, Convergence of convex-concave saddle functions : continuity properties of the Legendre-Fenchel transform with applications to convex programming and mechanics, Publications AVAMAC, Université de Perpignan, No. 85-08, 1985. 
  12. [12] D. AZÉ, Epi-convergence et dualité. Application à la convergence des variables primales et duales pour des suites de problèmes d'optimisation convexe, Publications AVAMAC, Université de Perpignan, No. 84-12, 1984. 
  13. [13] D. AZÉ, Convergence des variables duales dans des problèmes de transmission à travers des couches minces par des méthodes d'épi-convergence, Ric. di Mat., 35, 1986, pp. 125-159. Zbl0611.49006MR889865
  14. [14] I. EKELAND, R. TEMAM, Convex Analysis and Variational Problems, North Holland, Amsterdam, 1976. Zbl0322.90046MR463994
  15. [15] G. BOUCHITTÉ, P. SUQUET, Charges limites, plasticité et homogénéisation : le cas d'un bord chargé, C. R. Acad. Sci. Paris, Série I, 305, 1987, pp. 441-444. Zbl0658.73021MR916348
  16. [16] J. J. TELEGA, Perfectly plastic plates loaded by boundary bending moments : relaxations and homogenization, Arch. Mech., 43, 1991, pp. 711-737. Zbl0756.73010MR1174594
  17. [17] H. ATTOUCH, F. MURAT, Homogenization of fissured elastic materials, Publications AVAMAC, Université de Perpignan, No. 85-03, 1985. 
  18. [18] G. DUVAUT, Cours sur les méthodes variationnelles et la dualité, in : Duality and Complementarity in Mechanics of Solids, éd. by A. Borkowski, 1979, pp. 173-272, Ossolineum, Wroclaw. MR560095
  19. [19] E. SANCHEZ-PALENCIA, Non-Homogeneous Media and Vibration Theory, Springer-Verlag, Berlin, 1980. Zbl0432.70002
  20. [20] J. J. TELEGA, T. LEWIŃSKI, Homogenization of fissured Reissner-like plates, Part II: Convergence, Arch. Mech., 40, 1988, pp. 119-134. Zbl0702.73005MR1002823
  21. [21] R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, 1970. Zbl0193.18401MR274683

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.