Homogenization and effective properties of plates weakened by partially penetrating fissures : convergence and duality

J. J. Telega

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1993)

  • Volume: 27, Issue: 4, page 421-456
  • ISSN: 0764-583X

How to cite

top

Telega, J. J.. "Homogenization and effective properties of plates weakened by partially penetrating fissures : convergence and duality." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 27.4 (1993): 421-456. <http://eudml.org/doc/193709>.

@article{Telega1993,
author = {Telega, J. J.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {asymptotic method; method of epi-convergence; dual homogenization; homogenized complementary potential},
language = {eng},
number = {4},
pages = {421-456},
publisher = {Dunod},
title = {Homogenization and effective properties of plates weakened by partially penetrating fissures : convergence and duality},
url = {http://eudml.org/doc/193709},
volume = {27},
year = {1993},
}

TY - JOUR
AU - Telega, J. J.
TI - Homogenization and effective properties of plates weakened by partially penetrating fissures : convergence and duality
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1993
PB - Dunod
VL - 27
IS - 4
SP - 421
EP - 456
LA - eng
KW - asymptotic method; method of epi-convergence; dual homogenization; homogenized complementary potential
UR - http://eudml.org/doc/193709
ER -

References

top
  1. [1] T. LEWIŃSKI, J. J. TELEGA, Homogenization and effective properties of plates weakened by partially penetrating fissures : asymptotic analysis, Int. J. Eng. Sci., 9, 1991, pp. 1129-1155. Zbl0759.73004MR1124050
  2. [2] J. J. TELEGA, Homogenization of fissured elastic solids in the presence of unilateral conditions and friction, Comp. mech., 6, 1990, pp. 109-127. Zbl0723.73010
  3. [3] H. ATTOUCH, Variational Convergence for Functions and Operators, Pitman, London, 1984. Zbl0561.49012MR773850
  4. [4] J. J. TELEGA, Variational methods and convex analysis in contact problems and homogenization, IFTR Reports No. 38/90, Warsaw 1990, in Polish. 
  5. [5] H. ATTOUCH, Variational properties of epi-convergence. Applications of limit analysis problems in mechanics and duality theory, in : Multifunctions and Integrands, ed. by G. Salinetti, Lecture Notes in Mathematics, Vol.1091, 1984, pp. 80-104, Springer-Verlag, Berlin. MR785577
  6. [6] H. ATTOUCH, Epi-convergence and duality. Convergence of sequence ofmarginal and Lagrangian functions. Applications to homogenization problemsin mechanics, Publications AVAMAC, Université de Perpignan, No. 84-11, 1984. Zbl0588.49015
  7. [7] G. BUTTAZZO, Semicontinuity, Relaxation and Integral Representation Problems in the Calculus of Variations, Pitman, London, 1988. Zbl0669.49005
  8. [8] G. BOUCHITTÉ, Calcul des variations en cadre non réflexif. Représentation et relaxation de fonctionnelles intégrales sur un espace de mesures. Application enplasticité et homogénéisation, Thèse d'Etat, Université de Perpignan, 1987. 
  9. [9] A. AMBROSETTI, C. SBORDONE, Г-convergenza e G-convergenza per problemi di tipo ellitico, Boll. Un. Mat. Ital.,13-A, 1976, pp. 352-362. Zbl0345.49004MR487703
  10. [10] P. J. LAURENT, Approximation et Optimisation, Herrmann, Paris, 1972. Zbl0238.90058MR467080
  11. [11] H. ATTOUCH, D. AZÉ, R. J. B. WETS, Convergence of convex-concave saddle functions : continuity properties of the Legendre-Fenchel transform with applications to convex programming and mechanics, Publications AVAMAC, Université de Perpignan, No. 85-08, 1985. 
  12. [12] D. AZÉ, Epi-convergence et dualité. Application à la convergence des variables primales et duales pour des suites de problèmes d'optimisation convexe, Publications AVAMAC, Université de Perpignan, No. 84-12, 1984. 
  13. [13] D. AZÉ, Convergence des variables duales dans des problèmes de transmission à travers des couches minces par des méthodes d'épi-convergence, Ric. di Mat., 35, 1986, pp. 125-159. Zbl0611.49006MR889865
  14. [14] I. EKELAND, R. TEMAM, Convex Analysis and Variational Problems, North Holland, Amsterdam, 1976. Zbl0322.90046MR463994
  15. [15] G. BOUCHITTÉ, P. SUQUET, Charges limites, plasticité et homogénéisation : le cas d'un bord chargé, C. R. Acad. Sci. Paris, Série I, 305, 1987, pp. 441-444. Zbl0658.73021MR916348
  16. [16] J. J. TELEGA, Perfectly plastic plates loaded by boundary bending moments : relaxations and homogenization, Arch. Mech., 43, 1991, pp. 711-737. Zbl0756.73010MR1174594
  17. [17] H. ATTOUCH, F. MURAT, Homogenization of fissured elastic materials, Publications AVAMAC, Université de Perpignan, No. 85-03, 1985. 
  18. [18] G. DUVAUT, Cours sur les méthodes variationnelles et la dualité, in : Duality and Complementarity in Mechanics of Solids, éd. by A. Borkowski, 1979, pp. 173-272, Ossolineum, Wroclaw. MR560095
  19. [19] E. SANCHEZ-PALENCIA, Non-Homogeneous Media and Vibration Theory, Springer-Verlag, Berlin, 1980. Zbl0432.70002
  20. [20] J. J. TELEGA, T. LEWIŃSKI, Homogenization of fissured Reissner-like plates, Part II: Convergence, Arch. Mech., 40, 1988, pp. 119-134. Zbl0702.73005MR1002823
  21. [21] R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, 1970. Zbl0193.18401MR274683

NotesEmbed ?

top

You must be logged in to post comments.