Estimation of the conductivity in the one-phase Stefan problem : numerical results

K. Kunisch; K. A. Murphy; G. Peichl

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1993)

  • Volume: 27, Issue: 5, page 613-650
  • ISSN: 0764-583X

How to cite

top

Kunisch, K., Murphy, K. A., and Peichl, G.. "Estimation of the conductivity in the one-phase Stefan problem : numerical results." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 27.5 (1993): 613-650. <http://eudml.org/doc/193717>.

@article{Kunisch1993,
author = {Kunisch, K., Murphy, K. A., Peichl, G.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {parameter estimation; numerical algorithm; stability; diffusion equation; iterative algorithm; transient conductivity coefficient; free boundary problem; one-phase Stefan problem; convergence; numerical results},
language = {eng},
number = {5},
pages = {613-650},
publisher = {Dunod},
title = {Estimation of the conductivity in the one-phase Stefan problem : numerical results},
url = {http://eudml.org/doc/193717},
volume = {27},
year = {1993},
}

TY - JOUR
AU - Kunisch, K.
AU - Murphy, K. A.
AU - Peichl, G.
TI - Estimation of the conductivity in the one-phase Stefan problem : numerical results
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1993
PB - Dunod
VL - 27
IS - 5
SP - 613
EP - 650
LA - eng
KW - parameter estimation; numerical algorithm; stability; diffusion equation; iterative algorithm; transient conductivity coefficient; free boundary problem; one-phase Stefan problem; convergence; numerical results
UR - http://eudml.org/doc/193717
ER -

References

top
  1. [1] P. M. ANSELONE, 1965, Convergence and Error Bounds for Approximate Solutions of Integral and Operator Equations, Error in Digital Computation, Vol. II (L. B. Rall, eds.), Wiley and Sons, New York, pp.231-252. Zbl0158.34102MR189277
  2. [2] K. ATKINSON, 1967, The Numerical Solution of Fredholm Integral Equations of the Second Kind, SIAM J. Numerical Anal. 4, 337-348. Zbl0155.47404MR224314
  3. [3] K. ATKINSON, 1972, The Numerical Solution of Fredholm Integral Equations of the Second Kind with Singular Kernels, Numer. Math. 19, 248-259. Zbl0258.65117MR307512
  4. [4] H. T. BANKS and K. KUNISCH, 1989, Estimation Technique for Distributed Systems, Birkhäuser, Boston. Zbl0695.93020MR1045629
  5. [5] J. R. CANNON, 1984, The One-Dimensional Heat Equation, Addison-Wesley, Menlo Park, CA. Zbl0567.35001MR747979
  6. [6] A. FRIEDMAN, 1959, Free Boundary Problems for Parabolic Equations I. Melting of Solids, J. Math. and Mech. 8, 499-517. Zbl0089.07801MR144078
  7. [7] K.-H. HOFFMANN and H.-J. KORNSTAEDT, 1982, Ein numerisches Verfahren zur Lösung eines Identifizierungsproblems bei der Wärmeleitungsgleichung, Numerical treatment of Free Boundary Value Prolbems (J. Albrecht, L. Collatz, and K.-H. Hoffmann, eds.), Birkhäuser Verlag, Boston, pp. 108-126. Zbl0473.65080MR680238
  8. [8] K. KUNISCH, K. MURPHY, G. PEICHL, 1991, Estimation of the Conductivity in the One-Phase Stefan Problem I: Basic Results, Tech. Univ. Graz/Univ. Graz, Inst. für Math. Technical Report No. 184-1991. Zbl0848.35140

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.