Analysis of multilevel decomposition iterative methods for mixed finite element methods

R. E. Ewing; J. Wang

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1994)

  • Volume: 28, Issue: 4, page 377-398
  • ISSN: 0764-583X

How to cite

top

Ewing, R. E., and Wang, J.. "Analysis of multilevel decomposition iterative methods for mixed finite element methods." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 28.4 (1994): 377-398. <http://eudml.org/doc/193744>.

@article{Ewing1994,
author = {Ewing, R. E., Wang, J.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {multilevel decomposition iterative methods; finite element methods; jump coefficients; domain decomposition; numerical results; two-level Schwarz algorithm; second-order elliptic equations; relaxation; uniform convergence},
language = {eng},
number = {4},
pages = {377-398},
publisher = {Dunod},
title = {Analysis of multilevel decomposition iterative methods for mixed finite element methods},
url = {http://eudml.org/doc/193744},
volume = {28},
year = {1994},
}

TY - JOUR
AU - Ewing, R. E.
AU - Wang, J.
TI - Analysis of multilevel decomposition iterative methods for mixed finite element methods
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1994
PB - Dunod
VL - 28
IS - 4
SP - 377
EP - 398
LA - eng
KW - multilevel decomposition iterative methods; finite element methods; jump coefficients; domain decomposition; numerical results; two-level Schwarz algorithm; second-order elliptic equations; relaxation; uniform convergence
UR - http://eudml.org/doc/193744
ER -

References

top
  1. [1] I. BABUŠKA, 1973, The finite element method with Lagrangian multipliers, Numer, Math., 20, 179-192. Zbl0258.65108MR359352
  2. [2] R. E. BANK and T. F. DUPONT, 1981, An optimal order process for solving elliptic finite element equations, Math. Comp., 36, 35-51. Zbl0466.65059MR595040
  3. [3] R. E. BANK, T. F. DUPONT and H. YSERENTANT, 1988, The Hierarchical basis multigrid method, Numer. Math., 52, 427-458. Zbl0645.65074MR932709
  4. [4] J. H. BRAMBLE, R. E. EWING, J. E. PASCIAK and A. H. SCHATZ, 1988, A preconditioning technique for the efficient solution of problems with local grid refinement, Compt. Meth. Appl. Mech. Eng., 67, 149-159. Zbl0619.76113
  5. [5] J. H. BRAMBLE, J. E. PASCIAK, J. WANG and J. XU, 1991, Convergence estimates for product iterative methods with applications to domain decomposition, Math. Comp., 57, 1-22. Zbl0754.65085MR1090464
  6. [6] J. H. BRAMBLE, J. E. PASCIAK, J. WANG and J. XU, 1911, Convergence estimate for multigrid algorithms without regularity assumptions, Math. Comp., 57, 23-45. Zbl0727.65101MR1079008
  7. [7] F. BREZZI, 1974, On the existence, uniqueness, and approximation of saddle point problems arising from Lagrangian multipliers, R.A.I.R.O., Anal. Numér., 2, 129-151. Zbl0338.90047MR365287
  8. [8] F. BREZZI, J. Jr. DOUGLAS, M. FORTIN and L. D. MARINI, 1987, Efficient rectangular mixed finite elements in two and three space variables, R.A.I.R.O., Anal. Numér., 21, 581-604. Zbl0689.65065MR921828
  9. [9] F. BREZZI, J. Jr. DOUGLAS and L. D. MARINI, 1985, Two families of mixed finite elements for second order elliptic problems, Numer. Math., 47, 217-235. Zbl0599.65072MR799685
  10. [10] J. Jr. DOUGLAS and J. E. ROBERTS, Global estimates for mixed finite element methods for second order elliptic equations, Math. Comp., 45, 39-52. Zbl0624.65109MR771029
  11. [11] R. E. EWING and J. WANG, 1992, Analysis of the Schwarz algorithm for mixed finite element methods, R.A.I.R.O. M2AN, 26, 739-756. Zbl0765.65104MR1183415
  12. [12] M. DRYJA and O. WIDLUND, 1987, An additive variant of the Schwarz alternating method for the case of many subregions, Technical Report, Courant Institute of Mathematical Sciences, 339. 
  13. [13] M. DRYJA and O WIDLUND, 1989, Some domain decomposition algorithms for elliptic problems, Technical Report, Courant Institute of Mathematical Sciences, 438. Zbl0719.65084MR1038100
  14. [14] R. FALK and J. OSBORN, 1980, Error estimates for mixed methods, R.A.I.R.O., Anal. Numér., 14, 249-277. Zbl0467.65062MR592753
  15. [15] M. FORTIN, An analysis of the convergence of mixed finite element methods, R.A.I.R.O., Anal. Numér., 11, 341-354. Zbl0373.65055MR464543
  16. [16] R. GLOWINSKI and M. F. WHEELER, 1988, Domain decomposition and mixed finite element methods for elliptic problems, Proceedings of the First International Symposium on Domain Decomposition Methods for Partial Dijferential Equations (R. Glowinski, G. H. Golub, G. A. Meurant and J. Périaux, eds.). Zbl0661.65105MR972509
  17. [17] W. HACKBUSCH, 1985, Multi-Grid Methods and Applications, Springer-Verlag, New York. Zbl0595.65106
  18. [18] P. L. LIONS, 1988, On the Schwarz alternating method, Proceedings of the First International Symposium on Domain Decomposition Methods for Partial Differential Equations (R. Glowinski, G. H. Golub, G. A. Meurant and J. Périaux, eds.). Zbl0658.65090MR972509
  19. [19] T. P. MATHEW, 1989, Domain Decomposition and Iterative Refinement Methods for Mixed Finite Element Discretizations of Elliptic Problems, Ph. D. Thesis, New York University. 
  20. [20] P.-A. RAVIART and J.-M. THOMAS, 1977, A mixed finite element method for 2nd order elliptic problems, Mathematical Aspects of Finite Element Methods, Lecture Notes in Mathematics (606), Springer-Verlag, Berlin and New York, 292-315. Zbl0362.65089MR483555
  21. [21] H. A. SCHWARZ, 1869, Über einige Abbildungsaufgaben, Ges. Math. Abh., 11, 65-83. 
  22. [22] J. WANG, 1992, Convergence analysis without regularity assumptions for multigrid algorithms based on SOR smoothing, SIAM J. Numer. Anal., 29, 987-1001. Zbl0753.65093MR1173181
  23. [23] J. WANG, 1992, Convergence analysis of Schwarz algorithm and multilevel decomposition iterative methods I : selfadjoint and positive definite elliptic problems, in Iterative Methods in Linear Algebra, R. Beauwens and P. de Groen (eds.), North-Holland, Amsterdam. Zbl0785.65115MR1159720
  24. [24] J. WANG, 1993, Convergence analysis of the Schwarz algorithm and multilevel decomposition iterative methods II : non-selfadjoint and indefinite elliptic problems, SIAM J. Numer. Anal., 30, 953-970. Zbl0777.65066MR1231322
  25. [25] H. YSERENTANT, 1986, On the multi-level splitting of finite element spaces, Numer. Math., 49, 379-412. Zbl0608.65065MR853662

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.