Analysis of multilevel decomposition iterative methods for mixed finite element methods
- Volume: 28, Issue: 4, page 377-398
- ISSN: 0764-583X
Access Full Article
topHow to cite
topEwing, R. E., and Wang, J.. "Analysis of multilevel decomposition iterative methods for mixed finite element methods." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 28.4 (1994): 377-398. <http://eudml.org/doc/193744>.
@article{Ewing1994,
author = {Ewing, R. E., Wang, J.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {multilevel decomposition iterative methods; finite element methods; jump coefficients; domain decomposition; numerical results; two-level Schwarz algorithm; second-order elliptic equations; relaxation; uniform convergence},
language = {eng},
number = {4},
pages = {377-398},
publisher = {Dunod},
title = {Analysis of multilevel decomposition iterative methods for mixed finite element methods},
url = {http://eudml.org/doc/193744},
volume = {28},
year = {1994},
}
TY - JOUR
AU - Ewing, R. E.
AU - Wang, J.
TI - Analysis of multilevel decomposition iterative methods for mixed finite element methods
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1994
PB - Dunod
VL - 28
IS - 4
SP - 377
EP - 398
LA - eng
KW - multilevel decomposition iterative methods; finite element methods; jump coefficients; domain decomposition; numerical results; two-level Schwarz algorithm; second-order elliptic equations; relaxation; uniform convergence
UR - http://eudml.org/doc/193744
ER -
References
top- [1] I. BABUŠKA, 1973, The finite element method with Lagrangian multipliers, Numer, Math., 20, 179-192. Zbl0258.65108MR359352
- [2] R. E. BANK and T. F. DUPONT, 1981, An optimal order process for solving elliptic finite element equations, Math. Comp., 36, 35-51. Zbl0466.65059MR595040
- [3] R. E. BANK, T. F. DUPONT and H. YSERENTANT, 1988, The Hierarchical basis multigrid method, Numer. Math., 52, 427-458. Zbl0645.65074MR932709
- [4] J. H. BRAMBLE, R. E. EWING, J. E. PASCIAK and A. H. SCHATZ, 1988, A preconditioning technique for the efficient solution of problems with local grid refinement, Compt. Meth. Appl. Mech. Eng., 67, 149-159. Zbl0619.76113
- [5] J. H. BRAMBLE, J. E. PASCIAK, J. WANG and J. XU, 1991, Convergence estimates for product iterative methods with applications to domain decomposition, Math. Comp., 57, 1-22. Zbl0754.65085MR1090464
- [6] J. H. BRAMBLE, J. E. PASCIAK, J. WANG and J. XU, 1911, Convergence estimate for multigrid algorithms without regularity assumptions, Math. Comp., 57, 23-45. Zbl0727.65101MR1079008
- [7] F. BREZZI, 1974, On the existence, uniqueness, and approximation of saddle point problems arising from Lagrangian multipliers, R.A.I.R.O., Anal. Numér., 2, 129-151. Zbl0338.90047MR365287
- [8] F. BREZZI, J. Jr. DOUGLAS, M. FORTIN and L. D. MARINI, 1987, Efficient rectangular mixed finite elements in two and three space variables, R.A.I.R.O., Anal. Numér., 21, 581-604. Zbl0689.65065MR921828
- [9] F. BREZZI, J. Jr. DOUGLAS and L. D. MARINI, 1985, Two families of mixed finite elements for second order elliptic problems, Numer. Math., 47, 217-235. Zbl0599.65072MR799685
- [10] J. Jr. DOUGLAS and J. E. ROBERTS, Global estimates for mixed finite element methods for second order elliptic equations, Math. Comp., 45, 39-52. Zbl0624.65109MR771029
- [11] R. E. EWING and J. WANG, 1992, Analysis of the Schwarz algorithm for mixed finite element methods, R.A.I.R.O. M2AN, 26, 739-756. Zbl0765.65104MR1183415
- [12] M. DRYJA and O. WIDLUND, 1987, An additive variant of the Schwarz alternating method for the case of many subregions, Technical Report, Courant Institute of Mathematical Sciences, 339.
- [13] M. DRYJA and O WIDLUND, 1989, Some domain decomposition algorithms for elliptic problems, Technical Report, Courant Institute of Mathematical Sciences, 438. Zbl0719.65084MR1038100
- [14] R. FALK and J. OSBORN, 1980, Error estimates for mixed methods, R.A.I.R.O., Anal. Numér., 14, 249-277. Zbl0467.65062MR592753
- [15] M. FORTIN, An analysis of the convergence of mixed finite element methods, R.A.I.R.O., Anal. Numér., 11, 341-354. Zbl0373.65055MR464543
- [16] R. GLOWINSKI and M. F. WHEELER, 1988, Domain decomposition and mixed finite element methods for elliptic problems, Proceedings of the First International Symposium on Domain Decomposition Methods for Partial Dijferential Equations (R. Glowinski, G. H. Golub, G. A. Meurant and J. Périaux, eds.). Zbl0661.65105MR972509
- [17] W. HACKBUSCH, 1985, Multi-Grid Methods and Applications, Springer-Verlag, New York. Zbl0595.65106
- [18] P. L. LIONS, 1988, On the Schwarz alternating method, Proceedings of the First International Symposium on Domain Decomposition Methods for Partial Differential Equations (R. Glowinski, G. H. Golub, G. A. Meurant and J. Périaux, eds.). Zbl0658.65090MR972509
- [19] T. P. MATHEW, 1989, Domain Decomposition and Iterative Refinement Methods for Mixed Finite Element Discretizations of Elliptic Problems, Ph. D. Thesis, New York University.
- [20] P.-A. RAVIART and J.-M. THOMAS, 1977, A mixed finite element method for 2nd order elliptic problems, Mathematical Aspects of Finite Element Methods, Lecture Notes in Mathematics (606), Springer-Verlag, Berlin and New York, 292-315. Zbl0362.65089MR483555
- [21] H. A. SCHWARZ, 1869, Über einige Abbildungsaufgaben, Ges. Math. Abh., 11, 65-83.
- [22] J. WANG, 1992, Convergence analysis without regularity assumptions for multigrid algorithms based on SOR smoothing, SIAM J. Numer. Anal., 29, 987-1001. Zbl0753.65093MR1173181
- [23] J. WANG, 1992, Convergence analysis of Schwarz algorithm and multilevel decomposition iterative methods I : selfadjoint and positive definite elliptic problems, in Iterative Methods in Linear Algebra, R. Beauwens and P. de Groen (eds.), North-Holland, Amsterdam. Zbl0785.65115MR1159720
- [24] J. WANG, 1993, Convergence analysis of the Schwarz algorithm and multilevel decomposition iterative methods II : non-selfadjoint and indefinite elliptic problems, SIAM J. Numer. Anal., 30, 953-970. Zbl0777.65066MR1231322
- [25] H. YSERENTANT, 1986, On the multi-level splitting of finite element spaces, Numer. Math., 49, 379-412. Zbl0608.65065MR853662
Citations in EuDML Documents
top- Jan Brandts, Rob Stevenson, A stable and optimal complexity solution method for mixed finite element discretizations
- R. E. Ewing, J. Wang, Analysis of the Schwarz algorithm for mixed finite elements methods
- Ronald H.W. Hoppe, Barbara Wohlmuth, Efficient numerical solution of mixed finite element discretizations by adaptive multilevel methods
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.