Efficient numerical solution of mixed finite element discretizations by adaptive multilevel methods

Ronald H.W. Hoppe; Barbara Wohlmuth

Applications of Mathematics (1995)

  • Volume: 40, Issue: 3, page 227-248
  • ISSN: 0862-7940

Abstract

top
We consider mixed finite element discretizations of second order elliptic boundary value problems. Emphasis is on the efficient iterative solution by multilevel techniques with respect to an adaptively generated hierarchy of nonuniform triangulations. In particular, we present two multilevel solvers, the first one relying on ideas from domain decomposition and the second one resulting from mixed hybridization. Local refinement of the underlying triangulations is done by efficient and reliable a posteriori error estimators which can be derived by a defect correction in higher order ansatz spaces or by taking advantage of superconvergence results. The performance of the algorithms is illustrated by several numerical examples.

How to cite

top

Hoppe, Ronald H.W., and Wohlmuth, Barbara. "Efficient numerical solution of mixed finite element discretizations by adaptive multilevel methods." Applications of Mathematics 40.3 (1995): 227-248. <http://eudml.org/doc/32917>.

@article{Hoppe1995,
abstract = {We consider mixed finite element discretizations of second order elliptic boundary value problems. Emphasis is on the efficient iterative solution by multilevel techniques with respect to an adaptively generated hierarchy of nonuniform triangulations. In particular, we present two multilevel solvers, the first one relying on ideas from domain decomposition and the second one resulting from mixed hybridization. Local refinement of the underlying triangulations is done by efficient and reliable a posteriori error estimators which can be derived by a defect correction in higher order ansatz spaces or by taking advantage of superconvergence results. The performance of the algorithms is illustrated by several numerical examples.},
author = {Hoppe, Ronald H.W., Wohlmuth, Barbara},
journal = {Applications of Mathematics},
keywords = {elliptic boundary value problems; mixed finite element methods; adaptive multilevel techniques; mixed finite element; second-order elliptic boundary value problems; nonuniform triangulations; domain decomposition; multilevel preconditioned conjugate gradient iteration; adaptive multilevel method; local refinement; error estimators; defect correction; superconvergence; performance; test examples; boundary layers},
language = {eng},
number = {3},
pages = {227-248},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Efficient numerical solution of mixed finite element discretizations by adaptive multilevel methods},
url = {http://eudml.org/doc/32917},
volume = {40},
year = {1995},
}

TY - JOUR
AU - Hoppe, Ronald H.W.
AU - Wohlmuth, Barbara
TI - Efficient numerical solution of mixed finite element discretizations by adaptive multilevel methods
JO - Applications of Mathematics
PY - 1995
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 40
IS - 3
SP - 227
EP - 248
AB - We consider mixed finite element discretizations of second order elliptic boundary value problems. Emphasis is on the efficient iterative solution by multilevel techniques with respect to an adaptively generated hierarchy of nonuniform triangulations. In particular, we present two multilevel solvers, the first one relying on ideas from domain decomposition and the second one resulting from mixed hybridization. Local refinement of the underlying triangulations is done by efficient and reliable a posteriori error estimators which can be derived by a defect correction in higher order ansatz spaces or by taking advantage of superconvergence results. The performance of the algorithms is illustrated by several numerical examples.
LA - eng
KW - elliptic boundary value problems; mixed finite element methods; adaptive multilevel techniques; mixed finite element; second-order elliptic boundary value problems; nonuniform triangulations; domain decomposition; multilevel preconditioned conjugate gradient iteration; adaptive multilevel method; local refinement; error estimators; defect correction; superconvergence; performance; test examples; boundary layers
UR - http://eudml.org/doc/32917
ER -

References

top
  1. 10.1051/m2an/1985190100071, Math. Modelling Numer. Anal. 19, 7–35 (1985). (1985) MR0813687DOI10.1051/m2an/1985190100071
  2. 10.1137/0715049, SIAM J. Numer. Anal. 15, 736–754 (1978). (1978) MR0483395DOI10.1137/0715049
  3. 10.1002/nme.1620121010, Int. J. Numer. Methods Eng. 12, 1597–1615 (1978). (1978) DOI10.1002/nme.1620121010
  4. PLTMG—A Software Package for Solving Elliptic Partial Differential Equations. User’s Guide 6.0., SIAM, Philadelphia, 1990. (1990) MR1052151
  5. Refinement algorithm and data structures for regular local mesh refinement, Scientific Computing, R. Stepleman et al. (eds.), IMACS North-Holland, Amsterdam, 1983, pp. 3–17. (1983) MR0751598
  6. 10.1090/S0025-5718-1985-0777265-X, Math. Comp. 44, 283–301 (1985). (1985) MR0777265DOI10.1090/S0025-5718-1985-0777265-X
  7. A posteriori error estimates for elliptic problems in two and three space dimensions, Konrad-Zuse-Zentrum für Informationstechnik Berlin. Preprint SC 93–29, 1993. 
  8. 10.1007/BF01388699, Numer. Math. 64, 445–476 (1993). (1993) MR1213412DOI10.1007/BF01388699
  9. A posteriori error estimators for the Raviart-Thomas element, Ruhr-Universität Bochum, Fakultät für Mathematik, Bericht Nr. 175, 1994. 
  10. 10.1137/0729042, SIAM J. Numer. Anal. 29, 647–678 (1992). (1992) Zbl0759.65080MR1163350DOI10.1137/0729042
  11. Mixed and Hybrid Finite Element Methods, Springer, Berlin-Heidelberg-New York, 1991. (1991) MR1115205
  12. 10.1137/0914065, SIAM J. Sci. Comput. 14, 1072–1088 (1993). (1993) MR1232176DOI10.1137/0914065
  13. Domain decomposition methods for nonconforming finite element spaces of Lagrange-type, Rice University, Houston. Preprint TR 93–11, 1993. (1993) 
  14. 10.1016/0899-8248(89)90018-9, IMPACT Comput. Sci. Engrg. 1, 3–35 (1989). (1989) DOI10.1016/0899-8248(89)90018-9
  15. The Schwarz algorithm and multilevel decomposition iterative techniques for mixed finite element methods, Proc. 5th Int. Symp. on Domain Decomposition Methods for Partial Differential Equations, D.F. Keyes et al. (eds.), SIAM, Philadelphia, 1992, pp. 48–55. (1992) MR1189562
  16. 10.1051/m2an/1992260607391, Math. Modelling and Numer. Anal. 26, 739–756 (1992). (1992) MR1183415DOI10.1051/m2an/1992260607391
  17. 10.1051/m2an/1994280403771, Math. Modelling and Numer. Anal. 28, 377–398 (1994). (1994) MR1288504DOI10.1051/m2an/1994280403771
  18. Displacement and equilibrium models in the finite element method, Stress Analysis, C. Zienkiewicz and G. Holister (eds.), John Wiley and Sons, New York, 1965. (1965) 
  19. Element-oriented and edge-oriented local error estimators for nonconforming finite elements methods., Submitted to Math. Modelling and Numer. Anal. 
  20. Adaptive multilevel techniques for mixed finite element discretizations of elliptic boundary value problems, Submitted to SIAM J. Numer. Anal. MR1461801
  21. Adaptive iterative solution of mixed finite element discretizations using multilevel subspace decompositions and a flux-oriented error estimator, In preparation. 
  22. 10.1007/BF02243847, Computing 51, 125–133 (1993). (1993) Zbl0787.65018MR1248895DOI10.1007/BF02243847
  23. Mixed and hybrid methods, Handbook of Numerical Analysis, P.G. Ciarlet and J.L. Lions (eds.), Vol.II, Finite Element Methods (Part 1), North-Holland, Amsterdam, 1989. (1989) MR1115239
  24. 10.1007/BF01385872, Numer. Math. 63, 503–520 (1992). (1992) MR1189534DOI10.1007/BF01385872
  25. A review of a posteriori error estimation and adaptive mesh-refinement techniques, Manuscript, 1993. 
  26. Multilevel approaches to nonconforming finite elements discretizations of linear second order elliptic boundary value problems, To appear in Journal of Computation and Information. 
  27. 10.1137/1034116, SIAM Rev. 34, 581–613 (1992). (1992) Zbl0788.65037MR1193013DOI10.1137/1034116
  28. 10.1007/BF01389538, Numer. Math. 49, 379–412 (1986). (1986) Zbl0625.65109MR0853662DOI10.1007/BF01389538
  29. 10.1017/S0962492900002385, Acta Numerica 1, 285–326 (1993). (1993) Zbl0788.65108MR1224685DOI10.1017/S0962492900002385
  30. 10.1007/BF01385873, Numer. Math. 63, 521–539 (1992). (1992) Zbl0796.65129MR1189535DOI10.1007/BF01385873

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.