Plane stress elasto-plastic constitutive equations obtained by homogenizing one-dimensional structures

Eric Bonnetier

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1995)

  • Volume: 29, Issue: 1, page 23-52
  • ISSN: 0764-583X

How to cite

top

Bonnetier, Eric. "Plane stress elasto-plastic constitutive equations obtained by homogenizing one-dimensional structures." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 29.1 (1995): 23-52. <http://eudml.org/doc/193765>.

@article{Bonnetier1995,
author = {Bonnetier, Eric},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {periodic structures; elasto-plastic rods; internal parameters; homogeneous limit; Poisson's ratio},
language = {eng},
number = {1},
pages = {23-52},
publisher = {Dunod},
title = {Plane stress elasto-plastic constitutive equations obtained by homogenizing one-dimensional structures},
url = {http://eudml.org/doc/193765},
volume = {29},
year = {1995},
}

TY - JOUR
AU - Bonnetier, Eric
TI - Plane stress elasto-plastic constitutive equations obtained by homogenizing one-dimensional structures
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1995
PB - Dunod
VL - 29
IS - 1
SP - 23
EP - 52
LA - eng
KW - periodic structures; elasto-plastic rods; internal parameters; homogeneous limit; Poisson's ratio
UR - http://eudml.org/doc/193765
ER -

References

top
  1. [1] I. BABŠUKA, Y. LI, K. L. JERINA, 1991, Reliability of Computational Analysis of Plasticity Problems , in Nonlinear Computational Mechanics. State of the Art, P. Wriggers, W. Wagner, eds., Springer Verlag, 375-398. 
  2. [2] E. BONNETIER, 1988, Ph. D. thesis, University of Maryland. 
  3. [3] B. HALPHEN, NGUYEN QUOC SON, 1975, Sur les matériaux standards généralisés, J. Méca., 14, 39-63. Zbl0308.73017MR416177
  4. [4] J. -L. LIONS, 1962, Problèmes aux limites dans les équations aux dérivées partielles, Presses de l'Université de Montréal. Zbl0143.14003MR251372
  5. [5] A. E. H. LOVE, A Treatise on the Mathematical Theory of Elasticity, Dover. Zbl0063.03651
  6. [6] T. MlYOSHI, 1985, Foundations of the Numerical Analysis of Plasticity, Lecture Notes in Numerical and Applied Analysis, Vol. 7, North Holland. Zbl0596.73015
  7. [7] P. M. SUQUET, 1980, Mathematical Problems in Plasticity Theory, Proceedings of the Symposium on Complementary Problems and Variational Inequalities, Erice, R. W. Cottle, F. Gianessi and J. -L. Lions, eds., John Wiley and Sons, New York, 357-373. Zbl0494.73030MR578759

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.