Mathematical derivation of the power law describing polymer flow through a thin slab
- Volume: 29, Issue: 1, page 3-21
- ISSN: 0764-583X
Access Full Article
topHow to cite
topMikelić, Andro, and Tapiéro, Roland. "Mathematical derivation of the power law describing polymer flow through a thin slab." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 29.1 (1995): 3-21. <http://eudml.org/doc/193766>.
@article{Mikelić1995,
author = {Mikelić, Andro, Tapiéro, Roland},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {incompressible Navier-Stokes system; nonlinear viscosity; limit averaged velocity; nonlinear two-dimensional Poiseuille's law; convergence theorem; functional spaces},
language = {eng},
number = {1},
pages = {3-21},
publisher = {Dunod},
title = {Mathematical derivation of the power law describing polymer flow through a thin slab},
url = {http://eudml.org/doc/193766},
volume = {29},
year = {1995},
}
TY - JOUR
AU - Mikelić, Andro
AU - Tapiéro, Roland
TI - Mathematical derivation of the power law describing polymer flow through a thin slab
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1995
PB - Dunod
VL - 29
IS - 1
SP - 3
EP - 21
LA - eng
KW - incompressible Navier-Stokes system; nonlinear viscosity; limit averaged velocity; nonlinear two-dimensional Poiseuille's law; convergence theorem; functional spaces
UR - http://eudml.org/doc/193766
ER -
References
top- [1] J. BARANGER, K. NAJIB, 1990, Analyse numérique des écoulements quasi newtoniens dont la viscosité obéit à la loi de puissance ou à la loi de Carreau, Numer. Math. 58,35-49. Zbl0702.76007MR1069652
- [2] G. BAYADA, M. CHAMBAT, 1986, The transition between the Stokes equations and the Reynolds equation, a mathematical proof, Appl. Math. and Opt., 14, 73-93. Zbl0701.76039MR826853
- [3] R. B. BIRD, R. C. ARMSTRONG, O. HASSAGER, 1987, Dynamics of polymeric liquids, vol. 1: fluid mechanics, John Wiley and Sons, New York.
- [4] A. BOURGEAT, A. MIKELIĆ, 1992, Homogenization of a polymer flow through a porous medium, preprint no. 132, Équipe d'Analyse Numérique Lyon-Saint-Étienne (to appear in Nonlinear Anal. T.M.A. ). Zbl0863.76082MR1376100
- [5] A. BOURGEAT, A. MIKELIĆ, R. TAPIÉRO, 1993, Dérivation des équations moyennées décrivant un écoulement non newtomen dans un domaine defaible épaisseur, C. R. Acad. Sci, 316,Série I, 965-970. Zbl0777.76006MR1218298
- [6] H. BREZIS, 1983, Analyse fonctionnelle. Théorie et applications, Masson, Paris. Zbl0511.46001MR697382
- [7] L. CATTABRIGA, 1961, Su un problema di contorno relativo ai sistemi di equazioni di Stokes, Rend. Mat. Sem. Univ. Padova, 31, 308-340. Zbl0116.18002MR138894
- [8] H. DRIDI, 1982, Comportement asymptotique des équations de Navier-Stoke dans des domaines applatis, Bull. Sc. Math., 106, 369-385. Zbl0512.35015MR688196
- [9] I. EKELAND, R. TEMAM, 1974, Analyse convexe et problèmes variationnels, Dunod, Paris. Zbl0281.49001MR463993
- [10] V. GIRAULT, P. A. RAVIART, 1986, Finite element methods for Navier-Stokes equations, Springer Verlag, Berlin. Zbl0585.65077MR851383
- [11] P. GRISVARD, 1985, Elliptic problems in non-smooth domains, Pitman, Boston. Zbl0695.35060
- [12] V. A. KONDRATIEV, O. A. OLEINIK, 1988, Boundary value problems for the System of elasticity theory in unbounded domains. Korn's inequality, Russian Math Surveys, 43,5, 65-119. Zbl0669.73005MR971465
- [13] H. LE DRET, 1991, Problèmes variationnels dans les multidomaines, R. M. A. 19, Masson, Paris. Zbl0744.73027MR1130395
- [14] J.-L. LIONS, 1969, Quelques méthodes de résolution de problèmes aux limites non linéaires, Dunod, Paris. Zbl0189.40603MR259693
- [15] J. -L. LIONS, 1973, Perturbations singulières dans les problèmes aux limites et en contrôle optimal, Springer Verlag, Berlin. Zbl0268.49001MR600331
- [16] A. MIKELIĆ, 1991, Homogenization of nonstationary Navier-Stokes equations in a domain with a grained boundary, Annali di Mat. pura ed appl.,158, 167-179. Zbl0758.35007MR1131849
- [17] P. P. MOSOLOV, V. P. MJASNIKOV, 1971, A proof of Korn's inequality, Soviet Math. Doklady., 12, No. 6, 1618-1622. Zbl0248.52011
- [18] S. A. NAZAROV, 1990, Asymptotic Solution of the Navier-Stokes Problem on the flow of a thin layer of fluid, translated from Sibenan Math. J.,31, 2, 131-144. Zbl0712.76037MR1065588
- [19] D. SANDRI, 1993, Sur l'approximation numérique des écoulements quasi-newtoniens dont la viscosité suit la loi de puissance ou le modèle de Carreau, M2AN, 27, 131-155. Zbl0764.76039MR1211613
- [20] R. TEMAM, 1977Navier Stokes equations, North Holland, Amsterdam. Zbl0383.35057MR609732
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.