Mathematical derivation of the power law describing polymer flow through a thin slab

Andro Mikelić; Roland Tapiéro

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1995)

  • Volume: 29, Issue: 1, page 3-21
  • ISSN: 0764-583X

How to cite

top

Mikelić, Andro, and Tapiéro, Roland. "Mathematical derivation of the power law describing polymer flow through a thin slab." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 29.1 (1995): 3-21. <http://eudml.org/doc/193766>.

@article{Mikelić1995,
author = {Mikelić, Andro, Tapiéro, Roland},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {incompressible Navier-Stokes system; nonlinear viscosity; limit averaged velocity; nonlinear two-dimensional Poiseuille's law; convergence theorem; functional spaces},
language = {eng},
number = {1},
pages = {3-21},
publisher = {Dunod},
title = {Mathematical derivation of the power law describing polymer flow through a thin slab},
url = {http://eudml.org/doc/193766},
volume = {29},
year = {1995},
}

TY - JOUR
AU - Mikelić, Andro
AU - Tapiéro, Roland
TI - Mathematical derivation of the power law describing polymer flow through a thin slab
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1995
PB - Dunod
VL - 29
IS - 1
SP - 3
EP - 21
LA - eng
KW - incompressible Navier-Stokes system; nonlinear viscosity; limit averaged velocity; nonlinear two-dimensional Poiseuille's law; convergence theorem; functional spaces
UR - http://eudml.org/doc/193766
ER -

References

top
  1. [1] J. BARANGER, K. NAJIB, 1990, Analyse numérique des écoulements quasi newtoniens dont la viscosité obéit à la loi de puissance ou à la loi de Carreau, Numer. Math. 58,35-49. Zbl0702.76007MR1069652
  2. [2] G. BAYADA, M. CHAMBAT, 1986, The transition between the Stokes equations and the Reynolds equation, a mathematical proof, Appl. Math. and Opt., 14, 73-93. Zbl0701.76039MR826853
  3. [3] R. B. BIRD, R. C. ARMSTRONG, O. HASSAGER, 1987, Dynamics of polymeric liquids, vol. 1: fluid mechanics, John Wiley and Sons, New York. 
  4. [4] A. BOURGEAT, A. MIKELIĆ, 1992, Homogenization of a polymer flow through a porous medium, preprint no. 132, Équipe d'Analyse Numérique Lyon-Saint-Étienne (to appear in Nonlinear Anal. T.M.A. ). Zbl0863.76082MR1376100
  5. [5] A. BOURGEAT, A. MIKELIĆ, R. TAPIÉRO, 1993, Dérivation des équations moyennées décrivant un écoulement non newtomen dans un domaine defaible épaisseur, C. R. Acad. Sci, 316,Série I, 965-970. Zbl0777.76006MR1218298
  6. [6] H. BREZIS, 1983, Analyse fonctionnelle. Théorie et applications, Masson, Paris. Zbl0511.46001MR697382
  7. [7] L. CATTABRIGA, 1961, Su un problema di contorno relativo ai sistemi di equazioni di Stokes, Rend. Mat. Sem. Univ. Padova, 31, 308-340. Zbl0116.18002MR138894
  8. [8] H. DRIDI, 1982, Comportement asymptotique des équations de Navier-Stoke dans des domaines applatis, Bull. Sc. Math., 106, 369-385. Zbl0512.35015MR688196
  9. [9] I. EKELAND, R. TEMAM, 1974, Analyse convexe et problèmes variationnels, Dunod, Paris. Zbl0281.49001MR463993
  10. [10] V. GIRAULT, P. A. RAVIART, 1986, Finite element methods for Navier-Stokes equations, Springer Verlag, Berlin. Zbl0585.65077MR851383
  11. [11] P. GRISVARD, 1985, Elliptic problems in non-smooth domains, Pitman, Boston. Zbl0695.35060
  12. [12] V. A. KONDRATIEV, O. A. OLEINIK, 1988, Boundary value problems for the System of elasticity theory in unbounded domains. Korn's inequality, Russian Math Surveys, 43,5, 65-119. Zbl0669.73005MR971465
  13. [13] H. LE DRET, 1991, Problèmes variationnels dans les multidomaines, R. M. A. 19, Masson, Paris. Zbl0744.73027MR1130395
  14. [14] J.-L. LIONS, 1969, Quelques méthodes de résolution de problèmes aux limites non linéaires, Dunod, Paris. Zbl0189.40603MR259693
  15. [15] J. -L. LIONS, 1973, Perturbations singulières dans les problèmes aux limites et en contrôle optimal, Springer Verlag, Berlin. Zbl0268.49001MR600331
  16. [16] A. MIKELIĆ, 1991, Homogenization of nonstationary Navier-Stokes equations in a domain with a grained boundary, Annali di Mat. pura ed appl.,158, 167-179. Zbl0758.35007MR1131849
  17. [17] P. P. MOSOLOV, V. P. MJASNIKOV, 1971, A proof of Korn's inequality, Soviet Math. Doklady., 12, No. 6, 1618-1622. Zbl0248.52011
  18. [18] S. A. NAZAROV, 1990, Asymptotic Solution of the Navier-Stokes Problem on the flow of a thin layer of fluid, translated from Sibenan Math. J.,31, 2, 131-144. Zbl0712.76037MR1065588
  19. [19] D. SANDRI, 1993, Sur l'approximation numérique des écoulements quasi-newtoniens dont la viscosité suit la loi de puissance ou le modèle de Carreau, M2AN, 27, 131-155. Zbl0764.76039MR1211613
  20. [20] R. TEMAM, 1977Navier Stokes equations, North Holland, Amsterdam. Zbl0383.35057MR609732

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.