Time-discrete finite element schemes for Maxwell's equations

Ch. G. Makridakis; P. Monk

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1995)

  • Volume: 29, Issue: 2, page 171-197
  • ISSN: 0764-583X

How to cite

top

Makridakis, Ch. G., and Monk, P.. "Time-discrete finite element schemes for Maxwell's equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 29.2 (1995): 171-197. <http://eudml.org/doc/193771>.

@article{Makridakis1995,
author = {Makridakis, Ch. G., Monk, P.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {time-discrete finite element schemes; Maxwell's equations; rational Padé approximations; error estimates},
language = {eng},
number = {2},
pages = {171-197},
publisher = {Dunod},
title = {Time-discrete finite element schemes for Maxwell's equations},
url = {http://eudml.org/doc/193771},
volume = {29},
year = {1995},
}

TY - JOUR
AU - Makridakis, Ch. G.
AU - Monk, P.
TI - Time-discrete finite element schemes for Maxwell's equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1995
PB - Dunod
VL - 29
IS - 2
SP - 171
EP - 197
LA - eng
KW - time-discrete finite element schemes; Maxwell's equations; rational Padé approximations; error estimates
UR - http://eudml.org/doc/193771
ER -

References

top
  1. [1] J. ADAM, A. SERVENIÈRE, J. NÉDÉLEC and P. RAVIART, 1980, Study of an implicit scheme for integrating Maxwell's equations, Comp.Meth. Appl. Mech. Eng., 22, 327-346. Zbl0433.73067MR579675
  2. [2] G. BAKER and J. BRAMBLE, 1979, Semidiscrete and single step fully discrete approximations for second order hyperbolic equations, RAIRO Anal. Numer, 13, 75-100. Zbl0405.65057MR533876
  3. [3] A. BOSSAVIT, 1990, Solving Maxwell equations in a closed cavity, and the question of « spurious » modes, IEEE Trans. Mag., 26, 702-705. 
  4. [4] P. CIARLET, 1978, The Finite Element Method for Elliptic Problems, vol. 4 of Studies in Mathematics and It's Applications, Elsevier North-Holland, NewYork. Zbl0383.65058MR520174
  5. [5] F. DUBOIS, 1990, Discrete vector potential representation of a divergence free vector field in three dimensional domains : numerical analysis of a model problem, SIAM J. Numer. Anal., 27, 1103-1142. Zbl0717.65086MR1061122
  6. [6] V. GlRAULT, 1988, Incompressible finite element methods for Navier-Stokes equations with nonstandard boundary conditions in R3, Math. Comp., 51,53-58. Zbl0666.76053
  7. [7] V. GIRAULT, 1990, Curl-conforming finite element methods for Navier-Stokes equations with non-standard boundary conditions in R3, in The Navier-Stokes equations. Theory and Numerical Methods, Lecture Notes, 1431,Springer, 201-218. Zbl0702.76037MR1072191
  8. [8] V. GIRAULT and P. RAVIART, 1986, Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, New York. Zbl0585.65077MR851383
  9. [9] M. KŘÍŽEK and P. NEITTAANMÄKI, 1989, On time-harmonic Maxwell equations with nonhomogeneous conductivities : solvability and FE-approximation, Aplikace Matematiky, 34, 480-499. Zbl0696.65085MR1026513
  10. [10] R. LEIS, 1988, Initial Boundary Value Problems in Mathematical Physics, John Wiley, New York. Zbl0599.35001
  11. [11] K. MAHADEVAN and R. MITTRA, 1993, Radar cross section computations of inhomogeneous scatterers using edge-based finite element method in frequency and time domains, Radio Science, 28, 1181-1193. 
  12. [12] K. MAHADEVAN, R. MITTRA and P. M. VAIDYA, 1993, Use of Whitney's edge and face elements for efficient finite element time domain solution of Maxwell's equation, Preprint. 
  13. [13] C. G. MAKRIDAKIS, 1992, On mixed finite element methods in linear elastodynamics, Numer. Math., 61, 235-260. Zbl0734.73074MR1147578
  14. [14] P. MONK, 1993, An analysis of Nédélec's method for the spatial discretization of Maxwell's equations, J. Comp. Appl. Math., 47, 101-121. 3 Zbl0784.65091MR1226366
  15. [15] J. NÉDÉLEC, 1980, Mixed finite elements in R3, Numer. Math., 35, 315-341. Zbl0419.65069MR592160
  16. [16] J. NÉDÉLEC, Éléments finis mixtes incompressibles pour l'équation de Stokes dans R3, Numer. Math., 39, 97-112. Zbl0488.76038
  17. [17] K. YEE, 1966, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Trans. on Antennas and Propagation, AP-16, 302-307. Zbl1155.78304

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.