An operator method for a numerical quadrature finite element approximation for a class of second-order elliptic eigenvalue problems in composite structures
- Volume: 29, Issue: 3, page 339-365
- ISSN: 0764-583X
Access Full Article
topHow to cite
topVanmaele, M., and Van Keer, R.. "An operator method for a numerical quadrature finite element approximation for a class of second-order elliptic eigenvalue problems in composite structures." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 29.3 (1995): 339-365. <http://eudml.org/doc/193776>.
@article{Vanmaele1995,
author = {Vanmaele, M., Van Keer, R.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {multicomponent domain; operator method; second-order elliptic eigenvalue problem; finite element; numerical quadrature; error analysis},
language = {eng},
number = {3},
pages = {339-365},
publisher = {Dunod},
title = {An operator method for a numerical quadrature finite element approximation for a class of second-order elliptic eigenvalue problems in composite structures},
url = {http://eudml.org/doc/193776},
volume = {29},
year = {1995},
}
TY - JOUR
AU - Vanmaele, M.
AU - Van Keer, R.
TI - An operator method for a numerical quadrature finite element approximation for a class of second-order elliptic eigenvalue problems in composite structures
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1995
PB - Dunod
VL - 29
IS - 3
SP - 339
EP - 365
LA - eng
KW - multicomponent domain; operator method; second-order elliptic eigenvalue problem; finite element; numerical quadrature; error analysis
UR - http://eudml.org/doc/193776
ER -
References
top- [1] A. B. ANDREEV, V. A. KASCIEVA & M. VANMAELE, Some results in lumped, mass finite-element approximation of eigenvalue problems using numerical quadrature, J. Comp. Appl. Math., 43, 1992, 291-311. Zbl0762.65056MR1193808
- [2] I. BABUŠKA & J. E. OSBORN, Eigenvalue Problems. In : Handbook of Numerical Analysis, Vol. II, Finite Element Methods (Part 1) (P. G. Ciarlet, J. L. Lions, eds.). Amsterdam: North-Holland, 1991, 641-787. Zbl0875.65087MR1115240
- [3] U. BANERJEE, A note on the effect of numerical quadrature in finite element eigenvalue approximation, Numer. Math., 61, 1992, 145-152. Zbl0748.65078MR1147574
- [4] U. BANERJEE & J. E. OSBORN, Estimation of the Effect of Numerical Integration in Finite Element Eigenvalue Approximation, Numer. Math., 56, 1990, 735-762. Zbl0693.65071MR1035176
- [5] F. CHATELIN, Spectral Approximation of Linear Operators, New York : Academic Press, 1983. Zbl0517.65036MR716134
- [6] P. G. CIARLET, The Finite Element Method for Elliptic Problems, Amsterdam : North-Holland, 1978. Zbl0383.65058MR520174
- [7] R. DAUTRAY & J.-L. LIONS, Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques, Tome 2. Paris : Masson, 1985. Zbl0749.35005MR902801
- [8] R J. DAVIS & P. RABINOWITZ, Methods of numerical integration, New York : Academic Press, 1975. Zbl0304.65016MR448814
- [9] J. DESCLOUX, N. NASSIF & J. RAPPAZ, On Spectral Approximation. Problem of Convergence, R.A.I.R.O. Numerical Analysis, 12, 1978, 97-112. Zbl0393.65024MR483400
- [10] G. J. FIX, Eigenvalue Approximation by the Finite Element Method, Advances in Mathematics, 10, 1973, 300-316. Zbl0257.65086MR341900
- [11] J. KAČUR & R. VAN KEER, On the Numerical Solution of some Heat Transfer Problems in Multi-component Structures with Non-perfect Thermal Contacts. In : Numerical Methods for Thermal Problems VII (R. W. Lewis, ed.). Swansea : Pineridge Press, 1991, 1378-1388. MR1132506
- [12] H. KARDESTUNCER & D. H. NORRIE, Finite Element Handbook, New York : McGraw-Hill Book Comp, 1987. Zbl0638.65076MR900813
- [13] T. KATO, Perturbation Theory for Linear Operators, Berlin : Springer-Verlag, 1976. Zbl0342.47009MR407617
- [14] B. MERCIER, Lectures on Topics in Finite Element Solution of Elliptic Problems, Berlin : Springer-Verlag, 1976. Zbl0445.65100
- [15] M. N. ÖZISIK, Heat Conduction, New York John Wiley & Sons, 1980.
- [16] M. VANMAELE, On optimal and nearly optimal error estimates of a numerical quadrature finite element method for 2nd-order eigenvalue problems with Dirichlet boundary conditions, Simon Stevin, 67, 1992, 121-132. Zbl0802.65106MR1249049
- [17] M. VANMAELE, A numerical quadrature finite element method for 2nd-order eigenvalue problems with Dirichlet-Robin boundary conditions. Proceedings ISNA '92. Prague, 1994, 269-292.
- [18] M. VANMAELE & R. VAN KEER, Error estimates for a finite element method with numerical quadrature for a class of elliptic eigenvalue problems. In : Numerical Methods (D. Greenspan, R Rósza, eds.). Colloq. Math. Soc. János Bolyai, 59, 1990, Amsterdam, North-Holland, 267-282. Zbl0760.65096MR1161236
- [19] M. VANMAELE & R. VAN KEER, On a numerical quadrature finite element method for a class of elliptic eigenvalue problems in composite structures, Math. Comp.(submitted). Zbl0836.65113
- [20] M. VANMAELE & A. ŽENIŠEK, External finite element approximations of eigen-functions in case of multiple eigenvalues. J. Comp. Appl. Math. 50 (to appear). Zbl0811.65090MR1284251
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.