An operator method for a numerical quadrature finite element approximation for a class of second-order elliptic eigenvalue problems in composite structures

M. Vanmaele; R. Van Keer

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1995)

  • Volume: 29, Issue: 3, page 339-365
  • ISSN: 0764-583X

How to cite

top

Vanmaele, M., and Van Keer, R.. "An operator method for a numerical quadrature finite element approximation for a class of second-order elliptic eigenvalue problems in composite structures." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 29.3 (1995): 339-365. <http://eudml.org/doc/193776>.

@article{Vanmaele1995,
author = {Vanmaele, M., Van Keer, R.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {multicomponent domain; operator method; second-order elliptic eigenvalue problem; finite element; numerical quadrature; error analysis},
language = {eng},
number = {3},
pages = {339-365},
publisher = {Dunod},
title = {An operator method for a numerical quadrature finite element approximation for a class of second-order elliptic eigenvalue problems in composite structures},
url = {http://eudml.org/doc/193776},
volume = {29},
year = {1995},
}

TY - JOUR
AU - Vanmaele, M.
AU - Van Keer, R.
TI - An operator method for a numerical quadrature finite element approximation for a class of second-order elliptic eigenvalue problems in composite structures
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1995
PB - Dunod
VL - 29
IS - 3
SP - 339
EP - 365
LA - eng
KW - multicomponent domain; operator method; second-order elliptic eigenvalue problem; finite element; numerical quadrature; error analysis
UR - http://eudml.org/doc/193776
ER -

References

top
  1. [1] A. B. ANDREEV, V. A. KASCIEVA & M. VANMAELE, Some results in lumped, mass finite-element approximation of eigenvalue problems using numerical quadrature, J. Comp. Appl. Math., 43, 1992, 291-311. Zbl0762.65056MR1193808
  2. [2] I. BABUŠKA & J. E. OSBORN, Eigenvalue Problems. In : Handbook of Numerical Analysis, Vol. II, Finite Element Methods (Part 1) (P. G. Ciarlet, J. L. Lions, eds.). Amsterdam: North-Holland, 1991, 641-787. Zbl0875.65087MR1115240
  3. [3] U. BANERJEE, A note on the effect of numerical quadrature in finite element eigenvalue approximation, Numer. Math., 61, 1992, 145-152. Zbl0748.65078MR1147574
  4. [4] U. BANERJEE & J. E. OSBORN, Estimation of the Effect of Numerical Integration in Finite Element Eigenvalue Approximation, Numer. Math., 56, 1990, 735-762. Zbl0693.65071MR1035176
  5. [5] F. CHATELIN, Spectral Approximation of Linear Operators, New York : Academic Press, 1983. Zbl0517.65036MR716134
  6. [6] P. G. CIARLET, The Finite Element Method for Elliptic Problems, Amsterdam : North-Holland, 1978. Zbl0383.65058MR520174
  7. [7] R. DAUTRAY & J.-L. LIONS, Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques, Tome 2. Paris : Masson, 1985. Zbl0749.35005MR902801
  8. [8] R J. DAVIS & P. RABINOWITZ, Methods of numerical integration, New York : Academic Press, 1975. Zbl0304.65016MR448814
  9. [9] J. DESCLOUX, N. NASSIF & J. RAPPAZ, On Spectral Approximation. Problem of Convergence, R.A.I.R.O. Numerical Analysis, 12, 1978, 97-112. Zbl0393.65024MR483400
  10. [10] G. J. FIX, Eigenvalue Approximation by the Finite Element Method, Advances in Mathematics, 10, 1973, 300-316. Zbl0257.65086MR341900
  11. [11] J. KAČUR & R. VAN KEER, On the Numerical Solution of some Heat Transfer Problems in Multi-component Structures with Non-perfect Thermal Contacts. In : Numerical Methods for Thermal Problems VII (R. W. Lewis, ed.). Swansea : Pineridge Press, 1991, 1378-1388. MR1132506
  12. [12] H. KARDESTUNCER & D. H. NORRIE, Finite Element Handbook, New York : McGraw-Hill Book Comp, 1987. Zbl0638.65076MR900813
  13. [13] T. KATO, Perturbation Theory for Linear Operators, Berlin : Springer-Verlag, 1976. Zbl0342.47009MR407617
  14. [14] B. MERCIER, Lectures on Topics in Finite Element Solution of Elliptic Problems, Berlin : Springer-Verlag, 1976. Zbl0445.65100
  15. [15] M. N. ÖZISIK, Heat Conduction, New York John Wiley & Sons, 1980. 
  16. [16] M. VANMAELE, On optimal and nearly optimal error estimates of a numerical quadrature finite element method for 2nd-order eigenvalue problems with Dirichlet boundary conditions, Simon Stevin, 67, 1992, 121-132. Zbl0802.65106MR1249049
  17. [17] M. VANMAELE, A numerical quadrature finite element method for 2nd-order eigenvalue problems with Dirichlet-Robin boundary conditions. Proceedings ISNA '92. Prague, 1994, 269-292. 
  18. [18] M. VANMAELE & R. VAN KEER, Error estimates for a finite element method with numerical quadrature for a class of elliptic eigenvalue problems. In : Numerical Methods (D. Greenspan, R Rósza, eds.). Colloq. Math. Soc. János Bolyai, 59, 1990, Amsterdam, North-Holland, 267-282. Zbl0760.65096MR1161236
  19. [19] M. VANMAELE & R. VAN KEER, On a numerical quadrature finite element method for a class of elliptic eigenvalue problems in composite structures, Math. Comp.(submitted). Zbl0836.65113
  20. [20] M. VANMAELE & A. ŽENIŠEK, External finite element approximations of eigen-functions in case of multiple eigenvalues. J. Comp. Appl. Math. 50 (to appear). Zbl0811.65090MR1284251

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.