Fictitious domain/mixed finite element approach for a class of optimal shape design problems

Jaroslav Haslinger; Anders Klarbring

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1995)

  • Volume: 29, Issue: 4, page 435-450
  • ISSN: 0764-583X

How to cite

top

Haslinger, Jaroslav, and Klarbring, Anders. "Fictitious domain/mixed finite element approach for a class of optimal shape design problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 29.4 (1995): 435-450. <http://eudml.org/doc/193780>.

@article{Haslinger1995,
author = {Haslinger, Jaroslav, Klarbring, Anders},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {fictitious domain method; shape optimization problems; mixed finite elements; convergence},
language = {eng},
number = {4},
pages = {435-450},
publisher = {Dunod},
title = {Fictitious domain/mixed finite element approach for a class of optimal shape design problems},
url = {http://eudml.org/doc/193780},
volume = {29},
year = {1995},
}

TY - JOUR
AU - Haslinger, Jaroslav
AU - Klarbring, Anders
TI - Fictitious domain/mixed finite element approach for a class of optimal shape design problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1995
PB - Dunod
VL - 29
IS - 4
SP - 435
EP - 450
LA - eng
KW - fictitious domain method; shape optimization problems; mixed finite elements; convergence
UR - http://eudml.org/doc/193780
ER -

References

top
  1. [1] C. ATAMIAN, G. V. DINH, R. GLOWINSKI, HE JIWEN and J. PERIAUX, 1991, On some imbedding methods applied to fluid dynamics and electro-magnetics, Computer Methods in Applied Mechanics and Engineering, 91, pp.1271-1299. Zbl0768.76042MR1145790
  2. [2] E. J. HAUG, K. K. CHOI and V. KOMKOV, 1986, Design sensitivity analysis of structural Systems, Academic Press, Orlando. Zbl0618.73106MR860040
  3. [3] O. PIRONNEAU, 1984, Optimal shape design for eliptic Systems, Springer-Verlag, New York. Zbl0534.49001MR725856
  4. [4] J. HASLINGER and P. NEITTAANMÄKI, 1988, Finite element approximation for optimal shape design : theory and applications, John Wiley, Chichester. Zbl0713.73062MR982710
  5. [5] J. HASLINGER, K.-H. HOFFMANN and M. KOCVARA, 1993, Control/fictitious domain method for solving optimal design problems, M2AN 27(2), pp.157-182. Zbl0772.65043MR1211614
  6. [6] R. GLOWINSKI, T.-W. PAN and J. PERIAUX, 1994, A fictitious domain method for Dirichlet problem and applications, Computer Methods in Applied Mechanics and Engineering, 111, pp.283-303. Zbl0845.73078MR1259864
  7. [7] J.-B. HIRIART-URRUTY and C. LEMARÉCHAL, 1993, Convex analysis and minimization algorithms II, Springer-Verlag, New York. Zbl0795.49002MR1295240
  8. [8] H. SCHRAMM and J. ZOWE, 1992, A version of the bundie idea for minimizing a nonsmooth function : conceptual idea, convergence analysis, numerical results, SIAM J. Optimization, 2(1), pp.121-152. Zbl0761.90090MR1147886
  9. [9] R. GLOWINSKI, A. J. KEARSLEY, T. W. PAN and J. PERIAUX, 1995, Numerical simulation and optimal shape for viscous flow by a fictitious domain method, to appear. Zbl0837.76068MR1333904

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.