Fictitious domain/mixed finite element approach for a class of optimal shape design problems

Jaroslav Haslinger; Anders Klarbring

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1995)

  • Volume: 29, Issue: 4, page 435-450
  • ISSN: 0764-583X

How to cite

top

Haslinger, Jaroslav, and Klarbring, Anders. "Fictitious domain/mixed finite element approach for a class of optimal shape design problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 29.4 (1995): 435-450. <http://eudml.org/doc/193780>.

@article{Haslinger1995,
author = {Haslinger, Jaroslav, Klarbring, Anders},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {fictitious domain method; shape optimization problems; mixed finite elements; convergence},
language = {eng},
number = {4},
pages = {435-450},
publisher = {Dunod},
title = {Fictitious domain/mixed finite element approach for a class of optimal shape design problems},
url = {http://eudml.org/doc/193780},
volume = {29},
year = {1995},
}

TY - JOUR
AU - Haslinger, Jaroslav
AU - Klarbring, Anders
TI - Fictitious domain/mixed finite element approach for a class of optimal shape design problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1995
PB - Dunod
VL - 29
IS - 4
SP - 435
EP - 450
LA - eng
KW - fictitious domain method; shape optimization problems; mixed finite elements; convergence
UR - http://eudml.org/doc/193780
ER -

References

top
  1. [1] C. ATAMIAN, G. V. DINH, R. GLOWINSKI, HE JIWEN and J. PERIAUX, 1991, On some imbedding methods applied to fluid dynamics and electro-magnetics, Computer Methods in Applied Mechanics and Engineering, 91, pp.1271-1299. Zbl0768.76042MR1145790
  2. [2] E. J. HAUG, K. K. CHOI and V. KOMKOV, 1986, Design sensitivity analysis of structural Systems, Academic Press, Orlando. Zbl0618.73106MR860040
  3. [3] O. PIRONNEAU, 1984, Optimal shape design for eliptic Systems, Springer-Verlag, New York. Zbl0534.49001MR725856
  4. [4] J. HASLINGER and P. NEITTAANMÄKI, 1988, Finite element approximation for optimal shape design : theory and applications, John Wiley, Chichester. Zbl0713.73062MR982710
  5. [5] J. HASLINGER, K.-H. HOFFMANN and M. KOCVARA, 1993, Control/fictitious domain method for solving optimal design problems, M2AN 27(2), pp.157-182. Zbl0772.65043MR1211614
  6. [6] R. GLOWINSKI, T.-W. PAN and J. PERIAUX, 1994, A fictitious domain method for Dirichlet problem and applications, Computer Methods in Applied Mechanics and Engineering, 111, pp.283-303. Zbl0845.73078MR1259864
  7. [7] J.-B. HIRIART-URRUTY and C. LEMARÉCHAL, 1993, Convex analysis and minimization algorithms II, Springer-Verlag, New York. Zbl0795.49002MR1295240
  8. [8] H. SCHRAMM and J. ZOWE, 1992, A version of the bundie idea for minimizing a nonsmooth function : conceptual idea, convergence analysis, numerical results, SIAM J. Optimization, 2(1), pp.121-152. Zbl0761.90090MR1147886
  9. [9] R. GLOWINSKI, A. J. KEARSLEY, T. W. PAN and J. PERIAUX, 1995, Numerical simulation and optimal shape for viscous flow by a fictitious domain method, to appear. Zbl0837.76068MR1333904

NotesEmbed ?

top

You must be logged in to post comments.