A moving mesh fictitious domain approach for shape optimization problems

Raino A. E. Mäkinen; Tuomo Rossi; Jari Toivanen

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2000)

  • Volume: 34, Issue: 1, page 31-45
  • ISSN: 0764-583X

How to cite

top

Mäkinen, Raino A. E., Rossi, Tuomo, and Toivanen, Jari. "A moving mesh fictitious domain approach for shape optimization problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.1 (2000): 31-45. <http://eudml.org/doc/193979>.

@article{Mäkinen2000,
author = {Mäkinen, Raino A. E., Rossi, Tuomo, Toivanen, Jari},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {fictitious domain methods; shape optimization; Poisson equation; boundary variation technique; preconditioning; Lagrange multipliers; saddle-point problems; numerical experiments},
language = {eng},
number = {1},
pages = {31-45},
publisher = {Dunod},
title = {A moving mesh fictitious domain approach for shape optimization problems},
url = {http://eudml.org/doc/193979},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Mäkinen, Raino A. E.
AU - Rossi, Tuomo
AU - Toivanen, Jari
TI - A moving mesh fictitious domain approach for shape optimization problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 1
SP - 31
EP - 45
LA - eng
KW - fictitious domain methods; shape optimization; Poisson equation; boundary variation technique; preconditioning; Lagrange multipliers; saddle-point problems; numerical experiments
UR - http://eudml.org/doc/193979
ER -

References

top
  1. [1] G.P. Astrakhantsev, Method of fictitious domains for a second-order elliptic equation with natural boundary conditions. USSR Comput. Math. Math. Phys. 18 (1978) 114-121. Zbl0394.35028MR468228
  2. [2] C. Atamian, G.V. Dinh, R. Glowinski, J. He and J. Périaux, On some imbedding methods applied to fluid dynamics and electro-magnetics. Comput. Methods Appl. Mech. Engrg. 91 (1991) 1271-1299. Zbl0768.76042MR1145790
  3. [3] I. Babuška, The finite element method with Lagrangian multipliers. Numer. Math. 20 (1973) 179-192. Zbl0258.65108MR359352
  4. [4] A. Bespalov, Yu.A. Kuznetsov, O. Pironneau and M.-G. Vallet, Fictitious domain with separable preconditioners versus unstructured adapted meshes. Impact Comput. Sci. Eng. 4 (1992) 217-249. Zbl0760.76068MR1188325
  5. [5] C. Börgers, A triangulation algorithm for fast elliptic solvers based on domain imbedding. SIAM J. Numer. Anal. 27 (1990). 1187-1196. Zbl0715.65088MR1061125
  6. [6] C. Börgers and O.B. Widlund, On finite element domain imbedding methods. SIAM J. Numer. Anal. 27 1990) 963-978. Zbl0705.65078MR1051116
  7. [7] V. Braibant and C. Fleury, Shape optimal design using B-splines. Comput. Methods Appl. Mech. Engrg. 44 (1984) 247-267. Zbl0525.73104
  8. [8] J.H. Bramble, The Lagrangian multiplier method for Dirichlet's problem. Math. Comp. 37 (1981) 1-11. Zbl0477.65077MR616356
  9. [9] J.H. Bramble, J.E. Pasciak and A.H. Schatz, The construction of preconditioners for elliptic problems by substructuring, I. Math. Comp. 47 (1986) 103-134. Zbl0615.65112MR842125
  10. [10] R.A. Brockman, Geometric sensitivity analysis with isoparametric finite elements. Comm. Appl. Numer. Math. 3 (1987) 495-499. Zbl0623.73081
  11. [11] T.F. Chan, Analysis of preconditioners for domain decomposition. SIAM J. Numer. Anal. 24 (1987) 382-390. Zbl0625.65100MR881372
  12. [12] J. Daňková and J. Haslinger, Fictitious domain approach used in shape optimization: Neumann boudary condition, in Control of Partial Differential Equations and Applications (Laredo, 1994), Lecture Notes in Pure and Appl. Math., Dekker, New York 174 (1996) 43-49. Zbl0864.49022MR1364636
  13. [13] J. Daňková and J. Haslinger, Numerical realization of a fictitious domain approach used in shape optimization. I. Distributed controls. Appl. Math. 41 (1996) 123-147. Zbl0854.49004MR1373477
  14. [14] P. Duysinx, W.H. Zhang and C. Fleury, Sensitivity analysis with unstructured free mesh generators in 2-D and 3-D shape optimization, in Structural Optimization 93, Vol. 2, Rio de Janeiro (1993) 205-212. 
  15. [15] P.E. Gill, W. Murray and M.H. Wright, Practical Optimization. Academic Press, New York (1981). Zbl0503.90062MR634376
  16. [16] R. Glowinski, T. Hesla, D.D. Joseph, T.-W. Pan and J. Périaux, Distributed Lagrange multiplier methods for particulate flows, in Computational Science for the 21st Century, M.-O. Bristeau, G. Etgen, W. Fitzgibbon, J.L. Lions, J. Périaux and M. F.Wheeler Eds., Wiley, Chichester (1997) 270-279. Zbl0919.76077
  17. [17] R. Glowinski and Yu.A. Kuznetsov, On the solution of the Dirichlet problem for linear elliptic operators by a distributed Lagrande multiplier method. CR. Acad. Sci. Paris Sér. I Math. 327 (1998) 693-698. Zbl1005.65127MR1652674
  18. [18] R. Glowinski, T.-W. Pan, A.J. Kearsley and J. Périaux, Numerical simulation and optimal shape for viscous flow by a fictitious domain method. Internat J. Numer. Methods Fluids 20 (1995) 695-711. Zbl0837.76068MR1333904
  19. [19] R. Glowinski, T.-W. Pan and J. Périaux, A fictitious domain method for Dirichlet problem and applications. Comput. Methods Appl. Mech. Engrg. 111 (1994) 283-303. Zbl0845.73078MR1259864
  20. [20] A. Greenbaum, Iterative Methods for Solving Linear Systems, Frontiers in Applied Mathematics, SIAM, Philadelphia, PA, USA 17 (1997). Zbl0883.65022MR1474725
  21. [21] J. Haslinger, Imbedding/control approach for solving optimal shape design problems. East-West J. Numer. Math. 1 (1993) 111-119. Zbl0835.65089MR1253630
  22. [22] J. Haslinger, Comparison of different fictitious domain approaches used in shape optimization. Tech. Rep. 15, Laboratory of Scientific Computing, University of Jyväskylä (1996). 
  23. [23] J. Haslinger, K.H. Hoffmann and M. Kočvara, Control/fictitious domain method for solving optimal shape design problems. RAIRO Modél. Math. Anal. Numér. 27 (1993) 157-182. Zbl0772.65043MR1211614
  24. [24] J. Haslinger and D. Jedelský, Genetic algorithms and fictitious domain based approaches in shape optimization. Structural Optimization 12 (1996) 257-264. 
  25. [25] J. Haslinger and A. Klarbring, Fictitious domain/mixed finite element approach for a class of optimal shape design problems. RAIRO Modél. Math. Anal. Numér. 29 (1995) 435-450. Zbl0831.65072MR1346278
  26. [26] J. Haslinger and P. Neittaanmäki, Finite Element Approximation for Optimal Shape, Material and Topology Design, 2nd ed., Wiley, Chichester (1996). Zbl0845.73001MR1419500
  27. [27] J. He, Méthodes de domaines fictifs en méchanique des fluides applications aux écoulements potentiels instationnaires autour d'obstacles mobiles. Ph.D. thesis, Université Paris VI (1994). 
  28. [28] E. Heikkola, Y. Kuznetsov, T. Rossi and P. Tarvainen, Efficient preconditioners based on fictitious domains for elliptic FE-problems with Lagrange multipliers, in ENUMATH 97 - Proceedings of the 2nd European Conference on Numerical Mathematics and Advanced Applications, H.G. Bock, G- Kanschat, R. Rannacher, F. Brezzi, R. Glowinski, Yu.A. Kuznetsov and J.Périaux Eds., World Scientific Publishing Co., Inc., River Edge, NJ (1998) 646-661. Zbl0970.65047MR1704135
  29. [29] K. Kunisch and G. Peichl, Shape optimization for mixed boundary value problems based on an embedding method. Dynam. Contin. Discrete Impuls. Systems 4 (1998) 439-478. Zbl0914.49027MR1639129
  30. [30] Yu.A. Kuznetsov, Efficient iterative solvers for elliptic finite element problems on nonmatching grids. Russian J. Numer. Anal. Math. Modelling 10 (1995) 187-211. Zbl0839.65031MR1343473
  31. [31] Yu.A. Kuznetsov, Iterative analysis of finite element problems with Lagrange multipliers, in Computational Science for the 21st Century, M.-O. Bristeau, G. Etgen, W. Fitzgibbon, J.L. Lions, J. Périaux and M.F. Wheeler Eds., Wiley, Chichester (1997) 170-178. Zbl0911.65110
  32. [32] Yu.A. Kuznetsov and M.F. Wheeler, Optimal order substructuring preconditioners for mixed finite element methods on nonmaching grids, East-West J. Numer. Math. 3 (1995) 127-143. Zbl0832.65134MR1342888
  33. [33] R. Mäkinen, Finite-element design sensitivity analysis for non-linear potential problems. Comm. Appl. Numer. Math. 6 (1990) 343-350. Zbl0716.65097MR1062294
  34. [34] G.I. Marchuk, Yu.A. Kuznetsov and A.M. Matsokin, Fictitious domain and domain decomposition methods. Soviet J. Numer. Anal. Math. Modelling 1 (1986) 3-35. Zbl0825.65027MR897996
  35. [35] NAG, The NAG Fortran Library Manual: Mark 18. NAG Ltd, Oxford (1997). 
  36. [36] C.C. Paige and M.A. Saunders, Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12 (1975) 617-629. Zbl0319.65025MR383715
  37. [37] O. Pironneau, Optimal Shape Design for Elliptic Systems, Springer-Verlag, New York (1984). Zbl0534.49001MR725856
  38. [38] W. Proskurowski and P. S. Vassilevski, Preconditioning capacitance matrix problems in domain imbedding. SIAM J. Sci. Comput. 15 (1994) 77-88. Zbl0806.65118MR1257155
  39. [39] T. Rossi, Fictitious Domain Methods with Separable Preconditioners. Ph.D. thesis, Department of Mathematics, University of Jyväskylä (1995). Zbl0835.65056
  40. [40] T. Rossi and J. Toivanen, A parallel fast direct solver for block tridiagonal Systems with separable matrices of arbitrary dimension. SIAM J. Sci. Comput. 20 (1999) 1778-1793. Zbl0931.65020MR1694683
  41. [41] J. Sokolowski and J.-P. Zolesio, Introduction to Shape Optimization. Shape Sensitivity Analysis. Springer-Verlag, Berlin (1992). Zbl0761.73003MR1215733
  42. [42] P.N. Swarztrauber, The methods of cyclic reduction and Fourier analysis and the FACR algorithm for the discrete solution of Poisson's equation on a rectangle. SIAM Rev. 19 (1977) 490-501. Zbl0358.65088MR438732
  43. [43] J. Toivanen, Fictitious Domain Method Applied to Shape Optimization. Ph.D. thesis, Department of Mathematics, University of Jyväskylä (1997). Zbl0885.65070MR1483322
  44. [44] L. Tomas, Optimisation de Forme et Domaines Fictifs: Analyse de Nouvelles Formulations et Aspects Algorithmiques. Ph.D. thesis, École Centrale de Lyon (1997). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.