Control/fictitious domain method for solving optimal shape design problems

J. Haslinger; K.-H. Hoffmann; M. Kočvara

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1993)

  • Volume: 27, Issue: 2, page 157-182
  • ISSN: 0764-583X

How to cite

top

Haslinger, J., Hoffmann, K.-H., and Kočvara, M.. "Control/fictitious domain method for solving optimal shape design problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 27.2 (1993): 157-182. <http://eudml.org/doc/193699>.

@article{Haslinger1993,
author = {Haslinger, J., Hoffmann, K.-H., Kočvara, M.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite elements; mesh generation; optimal shape design; control/fictious domain technique; triangulation; stiffness matrix; Dirichlet problem},
language = {eng},
number = {2},
pages = {157-182},
publisher = {Dunod},
title = {Control/fictitious domain method for solving optimal shape design problems},
url = {http://eudml.org/doc/193699},
volume = {27},
year = {1993},
}

TY - JOUR
AU - Haslinger, J.
AU - Hoffmann, K.-H.
AU - Kočvara, M.
TI - Control/fictitious domain method for solving optimal shape design problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1993
PB - Dunod
VL - 27
IS - 2
SP - 157
EP - 182
LA - eng
KW - finite elements; mesh generation; optimal shape design; control/fictious domain technique; triangulation; stiffness matrix; Dirichlet problem
UR - http://eudml.org/doc/193699
ER -

References

top
  1. [1] C. ATAMIAN, G. V. DINH, R. GLOWINSKI, JIWEN HE and J. PERIAUX, 1991, On some imbedding methods applied to fluid dynamics and electro-magnetics, computer methods in applied mechanics and engineering, 91, 1271-1299. Zbl0768.76042MR1145790
  2. [2] D. BEGIS and R. GLOWINSKI, 1975, Application de la méthode des éléments finisà l'approximation d'un problème de domaine optimal. Méthodes de résolution des problèmes approchés, Appl. Math., 2, 130-169. Zbl0323.90063MR443372
  3. [3] F.H. CLARKE, 1983, Optimization and Nonsmooth Analysis, J. Wiley & Sons, New York. Zbl0582.49001MR709590
  4. [4] J. HASLINGER and P. NEITTAANMÄKI, 1988, finite Element Approximation of Optimal Shape Design : Theory and Applications, J. Wiley & Sons, Chichester New York-Brisbane-Toronto-Singapore. Zbl0713.73062MR982710
  5. [5] J. NEČAS, 1967, Les Methodes Directes en Théorie desEquations Elliptiques, Masson, Paris. MR227584
  6. [6] J. V. OUTRATA and Z. SCHINDLER, 1986, On using of bundle methods in nondifferentiable optimal control problems. Prob. Contr. lnf. Theory, 15, 275-286. Zbl0607.49020MR858491
  7. [7] O. PIRONNEAU, 1984, Optimal Shape Design for Elliptic Systems, Springer series in Computational Physics, Springer-Verlag, New York. Zbl0534.49001MR725856
  8. [8] H. SCHRAMM and J. ZOWE, 1988, A combination of the bundle approach and the trust region concept, Mathematical Research, 45, Akademie-Verlag, Berlin. Zbl0658.90074MR953339
  9. [9] D. TIBA, P. NEITTAANMÄKI and R. MÄKINEN, 1991, Controllability type properties for elliptic systems and applications. To appear in Proceedings of the « International Conference on Control and Estimation of Distributed Parameter Systems­­ », Birkhauser-Verlag. Zbl0753.49005MR1155657

Citations in EuDML Documents

top
  1. Jaroslav Haslinger, Anders Klarbring, Fictitious domain/mixed finite element approach for a class of optimal shape design problems
  2. Jana Daňková, Jaroslav Haslinger, Numerical realization of a fictitious domain approach used in shape optimization. Part I: Distributed controls
  3. Max D. Gunzburger, Hongchul Kim, Sandro Manservisi, On a shape control problem for the stationary Navier-Stokes equations
  4. Max D. Gunzburger, Hongchul Kim, Sandro Manservisi, On a shape control problem for the stationary Navier-Stokes equations
  5. Raino A. E. Mäkinen, Tuomo Rossi, Jari Toivanen, A moving mesh fictitious domain approach for shape optimization problems
  6. Raino A.E. Mäkinen, Tuomo Rossi, Jari Toivanen, A moving mesh fictitious domain approach for shape optimization problems

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.