Control/fictitious domain method for solving optimal shape design problems
J. Haslinger; K.-H. Hoffmann; M. Kočvara
- Volume: 27, Issue: 2, page 157-182
- ISSN: 0764-583X
Access Full Article
topHow to cite
topHaslinger, J., Hoffmann, K.-H., and Kočvara, M.. "Control/fictitious domain method for solving optimal shape design problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 27.2 (1993): 157-182. <http://eudml.org/doc/193699>.
@article{Haslinger1993,
author = {Haslinger, J., Hoffmann, K.-H., Kočvara, M.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite elements; mesh generation; optimal shape design; control/fictious domain technique; triangulation; stiffness matrix; Dirichlet problem},
language = {eng},
number = {2},
pages = {157-182},
publisher = {Dunod},
title = {Control/fictitious domain method for solving optimal shape design problems},
url = {http://eudml.org/doc/193699},
volume = {27},
year = {1993},
}
TY - JOUR
AU - Haslinger, J.
AU - Hoffmann, K.-H.
AU - Kočvara, M.
TI - Control/fictitious domain method for solving optimal shape design problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1993
PB - Dunod
VL - 27
IS - 2
SP - 157
EP - 182
LA - eng
KW - finite elements; mesh generation; optimal shape design; control/fictious domain technique; triangulation; stiffness matrix; Dirichlet problem
UR - http://eudml.org/doc/193699
ER -
References
top- [1] C. ATAMIAN, G. V. DINH, R. GLOWINSKI, JIWEN HE and J. PERIAUX, 1991, On some imbedding methods applied to fluid dynamics and electro-magnetics, computer methods in applied mechanics and engineering, 91, 1271-1299. Zbl0768.76042MR1145790
- [2] D. BEGIS and R. GLOWINSKI, 1975, Application de la méthode des éléments finisà l'approximation d'un problème de domaine optimal. Méthodes de résolution des problèmes approchés, Appl. Math., 2, 130-169. Zbl0323.90063MR443372
- [3] F.H. CLARKE, 1983, Optimization and Nonsmooth Analysis, J. Wiley & Sons, New York. Zbl0582.49001MR709590
- [4] J. HASLINGER and P. NEITTAANMÄKI, 1988, finite Element Approximation of Optimal Shape Design : Theory and Applications, J. Wiley & Sons, Chichester New York-Brisbane-Toronto-Singapore. Zbl0713.73062MR982710
- [5] J. NEČAS, 1967, Les Methodes Directes en Théorie desEquations Elliptiques, Masson, Paris. MR227584
- [6] J. V. OUTRATA and Z. SCHINDLER, 1986, On using of bundle methods in nondifferentiable optimal control problems. Prob. Contr. lnf. Theory, 15, 275-286. Zbl0607.49020MR858491
- [7] O. PIRONNEAU, 1984, Optimal Shape Design for Elliptic Systems, Springer series in Computational Physics, Springer-Verlag, New York. Zbl0534.49001MR725856
- [8] H. SCHRAMM and J. ZOWE, 1988, A combination of the bundle approach and the trust region concept, Mathematical Research, 45, Akademie-Verlag, Berlin. Zbl0658.90074MR953339
- [9] D. TIBA, P. NEITTAANMÄKI and R. MÄKINEN, 1991, Controllability type properties for elliptic systems and applications. To appear in Proceedings of the « International Conference on Control and Estimation of Distributed Parameter Systems », Birkhauser-Verlag. Zbl0753.49005MR1155657
Citations in EuDML Documents
top- Jaroslav Haslinger, Anders Klarbring, Fictitious domain/mixed finite element approach for a class of optimal shape design problems
- Jana Daňková, Jaroslav Haslinger, Numerical realization of a fictitious domain approach used in shape optimization. Part I: Distributed controls
- Max D. Gunzburger, Hongchul Kim, Sandro Manservisi, On a shape control problem for the stationary Navier-Stokes equations
- Max D. Gunzburger, Hongchul Kim, Sandro Manservisi, On a shape control problem for the stationary Navier-Stokes equations
- Raino A. E. Mäkinen, Tuomo Rossi, Jari Toivanen, A moving mesh fictitious domain approach for shape optimization problems
- Raino A.E. Mäkinen, Tuomo Rossi, Jari Toivanen, A moving mesh fictitious domain approach for shape optimization problems
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.