A local -error analysis of the streamline diffusion method for nonstationary convection-diffusion systems
- Volume: 29, Issue: 5, page 577-603
- ISSN: 0764-583X
Access Full Article
topHow to cite
topZhou, Guohui. "A local $L^2$-error analysis of the streamline diffusion method for nonstationary convection-diffusion systems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 29.5 (1995): 577-603. <http://eudml.org/doc/193784>.
@article{Zhou1995,
author = {Zhou, Guohui},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {error estimates; linear nonstationary convection-dominated convection-diffusion systems; streamline diffusion finite element method},
language = {eng},
number = {5},
pages = {577-603},
publisher = {Dunod},
title = {A local $L^2$-error analysis of the streamline diffusion method for nonstationary convection-diffusion systems},
url = {http://eudml.org/doc/193784},
volume = {29},
year = {1995},
}
TY - JOUR
AU - Zhou, Guohui
TI - A local $L^2$-error analysis of the streamline diffusion method for nonstationary convection-diffusion systems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1995
PB - Dunod
VL - 29
IS - 5
SP - 577
EP - 603
LA - eng
KW - error estimates; linear nonstationary convection-dominated convection-diffusion systems; streamline diffusion finite element method
UR - http://eudml.org/doc/193784
ER -
References
top- [1] E. ERIKSSON, C. JOHNSON, Adaptive finite element methods for parabolic problems IV : Nonlinear problems, to appear. Zbl0835.65116
- [2] E. ERIKSSON, C. JOHNSON, V. THOMÉE, Time discretization of parabolic problems by the discontinuous Galerkin method, Math. Modelling and Numer. Anal, 19, 1985, 611-643. Zbl0589.65070MR826227
- [3] T. J. R. HUGHES, M. MALLET, A. MIZUKAMI, A new finite element formulation for computational fluid dynamics : II. Beyond SUPG, Comput. Methods Appl. Mech. Engrg., 54, 1986, 341-355. Zbl0622.76074MR836189
- [4] T. J. R. HUGHES, M. MALLET, A new finite element formulation for computational fluid dynamics : III. The general streamline operator for multidimensional advective-diffusive Systems, Comput Methods Appl. Mech. Engrg., 58, 1986, 305-328. Zbl0622.76075MR865671
- [5] T. J. R. HUGHES, M. MALLET, A new finite element formulation for computational fluid dynamics : IV. A discontinuity-capturing operator for multidimensional advective-diffusive Systems, Comput. Methods Appl. Mech. Engrg., 58, 1986, 329-336. Zbl0587.76120MR865672
- [6] C. JOHNSON, Finite element methods for convection-diffusion problems, in : Computing Methods in Engineering and Applied Sciences V, (R. Glowinski and J. L. Lions, eds.), North-Holland, 1981. Zbl0505.76099MR784648
- [7] C. JOHNSON, Numerical Solution of Partial Differential Equations by the Finite Element Method, Cambridge University Press, 1987. Zbl0628.65098MR925005
- [8] C. JOHNSON, U. NÄVERT, An analysis of some finite element methods for advection-diffusion, in Analytical and Numerical Approaches to Asymptotic Problems in Analysis, (O. Axelsson, L. S. Frank and A. van der Sluis, eds.), North-Holland, 1981. Zbl0455.76081MR605494
- [9] C. JOHNSON, U. NÄVERT, J. PITKÄRANTA, Finite element methods for linear hyperbolic problems, Comput. Methods Appl. Mech. Engrg., 45, 1984, 285-312. Zbl0526.76087MR759811
- [10] C. JOHNSON, A. H. SCHATZ, L. B. WAHLBIN, Crosswind smear and pointwise errors in streamline diffusion finite element methods, Math. Comp., 49, 179, 1987, 25-38. Zbl0629.65111MR890252
- [11] U. NÄVERT, A finite element method for convection-diffusion problems, Thesis, Chalmers University of Technology, Göteborg, Sweden, 1982.
- [12] R. RANNACHER, G. ZHOU, Mesh adaptation via a predictor-corrector strategy in the streamline diffusion method for nonstationary hyperbolic Systems. Proceedings of the 9th GAMM-Seminar Kiel, Eds. W. Hackbusch and G. Wittum, Vieweg Verlag Stuttgart, 1993. Zbl0808.65098
- [13] L. R. SCOTT, S. Y. ZHANG, Finite Element Interpolation of Nonsmooth Functions Satisfying Boundary Conditions, Math. Comp., 54, 190, 1990, 483-493. Zbl0696.65007MR1011446
- [14] J. SMOLLER, Shock Waves and Reaction-Diffusion Equations, Springer Heidelberg, 1983. Zbl0508.35002MR688146
- [15] G. ZHOU, An adaptive streamline diffusion finite element method for hyperbolic Systems in gas dynamics, Thesis, Heidelberg University, Germany, 1992.
- [16] G. ZHOU, Local pointwise error estimates for the streamline diffusion method applied to nonstationary hyperbolic problems, SFB 359 Preprint 93-64, Heidelberg University, 1993. Zbl0837.65100MR1359411
- [17] G. ZHOU, R. RANNACHER, Mesh orientation and refinement in the streamline diffusion method, SFB 359 Preprint 93-57, Heidelberg University, 1993. Zbl0812.76047
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.