A local L 2 -error analysis of the streamline diffusion method for nonstationary convection-diffusion systems

Guohui Zhou

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1995)

  • Volume: 29, Issue: 5, page 577-603
  • ISSN: 0764-583X

How to cite

top

Zhou, Guohui. "A local $L^2$-error analysis of the streamline diffusion method for nonstationary convection-diffusion systems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 29.5 (1995): 577-603. <http://eudml.org/doc/193784>.

@article{Zhou1995,
author = {Zhou, Guohui},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {error estimates; linear nonstationary convection-dominated convection-diffusion systems; streamline diffusion finite element method},
language = {eng},
number = {5},
pages = {577-603},
publisher = {Dunod},
title = {A local $L^2$-error analysis of the streamline diffusion method for nonstationary convection-diffusion systems},
url = {http://eudml.org/doc/193784},
volume = {29},
year = {1995},
}

TY - JOUR
AU - Zhou, Guohui
TI - A local $L^2$-error analysis of the streamline diffusion method for nonstationary convection-diffusion systems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1995
PB - Dunod
VL - 29
IS - 5
SP - 577
EP - 603
LA - eng
KW - error estimates; linear nonstationary convection-dominated convection-diffusion systems; streamline diffusion finite element method
UR - http://eudml.org/doc/193784
ER -

References

top
  1. [1] E. ERIKSSON, C. JOHNSON, Adaptive finite element methods for parabolic problems IV : Nonlinear problems, to appear. Zbl0835.65116
  2. [2] E. ERIKSSON, C. JOHNSON, V. THOMÉE, Time discretization of parabolic problems by the discontinuous Galerkin method, Math. Modelling and Numer. Anal, 19, 1985, 611-643. Zbl0589.65070MR826227
  3. [3] T. J. R. HUGHES, M. MALLET, A. MIZUKAMI, A new finite element formulation for computational fluid dynamics : II. Beyond SUPG, Comput. Methods Appl. Mech. Engrg., 54, 1986, 341-355. Zbl0622.76074MR836189
  4. [4] T. J. R. HUGHES, M. MALLET, A new finite element formulation for computational fluid dynamics : III. The general streamline operator for multidimensional advective-diffusive Systems, Comput Methods Appl. Mech. Engrg., 58, 1986, 305-328. Zbl0622.76075MR865671
  5. [5] T. J. R. HUGHES, M. MALLET, A new finite element formulation for computational fluid dynamics : IV. A discontinuity-capturing operator for multidimensional advective-diffusive Systems, Comput. Methods Appl. Mech. Engrg., 58, 1986, 329-336. Zbl0587.76120MR865672
  6. [6] C. JOHNSON, Finite element methods for convection-diffusion problems, in : Computing Methods in Engineering and Applied Sciences V, (R. Glowinski and J. L. Lions, eds.), North-Holland, 1981. Zbl0505.76099MR784648
  7. [7] C. JOHNSON, Numerical Solution of Partial Differential Equations by the Finite Element Method, Cambridge University Press, 1987. Zbl0628.65098MR925005
  8. [8] C. JOHNSON, U. NÄVERT, An analysis of some finite element methods for advection-diffusion, in Analytical and Numerical Approaches to Asymptotic Problems in Analysis, (O. Axelsson, L. S. Frank and A. van der Sluis, eds.), North-Holland, 1981. Zbl0455.76081MR605494
  9. [9] C. JOHNSON, U. NÄVERT, J. PITKÄRANTA, Finite element methods for linear hyperbolic problems, Comput. Methods Appl. Mech. Engrg., 45, 1984, 285-312. Zbl0526.76087MR759811
  10. [10] C. JOHNSON, A. H. SCHATZ, L. B. WAHLBIN, Crosswind smear and pointwise errors in streamline diffusion finite element methods, Math. Comp., 49, 179, 1987, 25-38. Zbl0629.65111MR890252
  11. [11] U. NÄVERT, A finite element method for convection-diffusion problems, Thesis, Chalmers University of Technology, Göteborg, Sweden, 1982. 
  12. [12] R. RANNACHER, G. ZHOU, Mesh adaptation via a predictor-corrector strategy in the streamline diffusion method for nonstationary hyperbolic Systems. Proceedings of the 9th GAMM-Seminar Kiel, Eds. W. Hackbusch and G. Wittum, Vieweg Verlag Stuttgart, 1993. Zbl0808.65098
  13. [13] L. R. SCOTT, S. Y. ZHANG, Finite Element Interpolation of Nonsmooth Functions Satisfying Boundary Conditions, Math. Comp., 54, 190, 1990, 483-493. Zbl0696.65007MR1011446
  14. [14] J. SMOLLER, Shock Waves and Reaction-Diffusion Equations, Springer Heidelberg, 1983. Zbl0508.35002MR688146
  15. [15] G. ZHOU, An adaptive streamline diffusion finite element method for hyperbolic Systems in gas dynamics, Thesis, Heidelberg University, Germany, 1992. 
  16. [16] G. ZHOU, Local pointwise error estimates for the streamline diffusion method applied to nonstationary hyperbolic problems, SFB 359 Preprint 93-64, Heidelberg University, 1993. Zbl0837.65100MR1359411
  17. [17] G. ZHOU, R. RANNACHER, Mesh orientation and refinement in the streamline diffusion method, SFB 359 Preprint 93-57, Heidelberg University, 1993. Zbl0812.76047

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.