# Time discretization of parabolic problems by the discontinuous Galerkin method

Kenneth Eriksson; Claes Johnson; Vidar Thomée

- Volume: 19, Issue: 4, page 611-643
- ISSN: 0764-583X

## Access Full Article

top## How to cite

topEriksson, Kenneth, Johnson, Claes, and Thomée, Vidar. "Time discretization of parabolic problems by the discontinuous Galerkin method." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 19.4 (1985): 611-643. <http://eudml.org/doc/193462>.

@article{Eriksson1985,

author = {Eriksson, Kenneth, Johnson, Claes, Thomée, Vidar},

journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},

keywords = {discontinuous Galerkin method; Hilbert space; Error estimates},

language = {eng},

number = {4},

pages = {611-643},

publisher = {Dunod},

title = {Time discretization of parabolic problems by the discontinuous Galerkin method},

url = {http://eudml.org/doc/193462},

volume = {19},

year = {1985},

}

TY - JOUR

AU - Eriksson, Kenneth

AU - Johnson, Claes

AU - Thomée, Vidar

TI - Time discretization of parabolic problems by the discontinuous Galerkin method

JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

PY - 1985

PB - Dunod

VL - 19

IS - 4

SP - 611

EP - 643

LA - eng

KW - discontinuous Galerkin method; Hilbert space; Error estimates

UR - http://eudml.org/doc/193462

ER -

## References

top- [1] G.A. BAKER, J. H. BRAMBLE and V. THOMÉE, Single step Galerkin approximations for parabolic problems. Math. comp. 31, 818-847 (1977). Zbl0378.65061MR448947
- [2] M. C. DELFOUR, W.W. HAGER and F. TROCHU, Discontinuous Galerkin methods for ordinary differential equations. Math. Comp. 36, 455-473 (1981). Zbl0469.65053MR606506
- [3] P. JAMET, Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain. SIAM J. Numer. Anal. 15, 912-928 (1978). Zbl0434.65091MR507554
- [4] C. JOHNSON, On error estimates for numerical methods for stiff o.d.e's. Preprint, Department of Mathematics, University of Michigan, 1984.
- [5] M. LUSKIN and R. RANNACHER, On the smoothing property of the Galerkin method for parabolic equations SIAM J. Numer. Anal. 19, 93-113 (1981). Zbl0483.65064MR646596
- [6] V. THOMÉE, Galerkin Methods for Parabolic Problems, Springer Lecture Notes in Mathematics, No. 1054, 1984. Zbl0528.65052MR744045

## Citations in EuDML Documents

top- D. Estep, S. Larsson, The discontinuous Galerkin method for semilinear parabolic problems
- Guohui Zhou, A local ${L}^{2}$-error analysis of the streamline diffusion method for nonstationary convection-diffusion systems
- Miloslav Feistauer, Jaroslav Hájek, Karel Švadlenka, Space-time discontinuos Galerkin method for solving nonstationary convection-diffusion-reaction problems
- Günter Lippold, Error estimates and step-size control for the approximate solution of a first order evolution equation
- Konstantinos Chrysafinos, Sotirios P. Filopoulos, Theodosios K. Papathanasiou, Error estimates for a FitzHugh–Nagumo parameter-dependent reaction-diffusion system
- Konstantinos Chrysafinos, Sotirios P. Filopoulos, Theodosios K. Papathanasiou, Error estimates for a FitzHugh–Nagumo parameter-dependent reaction-diffusion system
- Konstantinos Chrysafinos, Convergence of discontinuous Galerkin approximations of an optimal control problem associated to semilinear parabolic PDE's

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.