Multigrid methods for parameter dependent problems

Susanne C. Brenner

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1996)

  • Volume: 30, Issue: 3, page 265-297
  • ISSN: 0764-583X

How to cite

top

Brenner, Susanne C.. "Multigrid methods for parameter dependent problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 30.3 (1996): 265-297. <http://eudml.org/doc/193805>.

@article{Brenner1996,
author = {Brenner, Susanne C.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {pure displacement; pure traction; Timoshenko beam; Reissner-Mindlin plate},
language = {eng},
number = {3},
pages = {265-297},
publisher = {Dunod},
title = {Multigrid methods for parameter dependent problems},
url = {http://eudml.org/doc/193805},
volume = {30},
year = {1996},
}

TY - JOUR
AU - Brenner, Susanne C.
TI - Multigrid methods for parameter dependent problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1996
PB - Dunod
VL - 30
IS - 3
SP - 265
EP - 297
LA - eng
KW - pure displacement; pure traction; Timoshenko beam; Reissner-Mindlin plate
UR - http://eudml.org/doc/193805
ER -

References

top
  1. [1] D. N. ARNOLD, 1981, Discretization by finite elements of a parameter dependent problem, Numer. Math., 37, pp. 405-421. Zbl0446.73066MR627113
  2. [2] D. N. ARNOLD, F. BREZZI and M. FORTIN, 1984, A stable finite element for the Stokes equations, Calcolo, 21, pp. 337-344. Zbl0593.76039MR799997
  3. [3] D. N. ARNOLD and R. S. FALK, 1989, A uniformly accurate finite element method for the Reissner-Mindlin plate, SIAM J. Numer. Anal, 26, pp. 1276-1290. Zbl0696.73040MR1025088
  4. [4] D. N. ARNOLD and R. S. FALK, 1990, The boundary layer for the Reissner-Mindlin plate model, SIAM J. Math. Anal, 21, pp. 281-312. Zbl0698.73042MR1038893
  5. [5] R. E. BANK and T. DUPONT, 1981, An optimal order process for solving finite element equations, Math, Comp., 36, pp. 35-51. Zbl0466.65059MR595040
  6. [6] D. BRAESS and C. BLÖMER, 1990, A multigrid method for a parameter dependent problem in solid mechanics, Numer. Math., 57, pp. 747-761. Zbl0665.65077MR1065522
  7. [7] D. BRAESS and R. VERFÜRTH, 1990, Multigrid methods for nonconforming finite element methods, SIAM J. Numer. Anal, 27, pp. 979-986. Zbl0703.65067MR1051117
  8. [8] J. H. BRAMBLE, 1993, Multigrid Methods, Longman Scientific & Technical, Essex. Zbl0786.65094MR1247694
  9. [9] S. C. BRENNER, 1989, An optimal order multigrid method for PI nonconforming finite elements, Math. Comp., 52, pp. 1-15. Zbl0664.65103MR946598
  10. [10] S. C. BRENNER, 1989, Multigrid methods for nonconforming finite elements, in Proceedings of the Fourth Copper Mountain Conference on Multigrid Methods, J. Mandel et al, ed., Society for Industrial and Applied Mathematics, Philadelphia, pp. 54-65. MR1065626
  11. [11] S. C. BRENNER, 1990, A nonconforming multigrid method for the stationary Stokes equations, Math. Comp., 55, 1993, pp. 411-437. Zbl0705.76027MR1035927
  12. [12] S. C. BRENNER, 1993, A nonconforming mixed multigrid method for the pure displacement problem in planar linear elasticity, SIAM J. Numer. Anal, 30,pp. 116-135. Zbl0767.73068MR1202659
  13. [13] S. C. BRENNER, 1994, A nonconforming mixed multigrid method for the pure traction problem in planar linear elasticity, Math. Comp., 63, pp. 435-460, S1-S5. Zbl0809.73064MR1257574
  14. [14] S. C. BRENNER and L. R. SCOTT, 1994, The Mathematical Theory of Finite Element Methods, Springer-Verlag. Zbl0804.65101MR1278258
  15. [15] S. C. BRENNER and L.-Y. SUNG, 1992, Linear finite element methods for planar linear elasticity, Math. Comp., 59, pp. 321-338. Zbl0766.73060MR1140646
  16. [16] F. BREZZI, K. J. BATHE and M. FORTIN, 1989, Mixed-interpolated elements for Reissner-Mindlin plates, Int. J. Numer. Math, Eng., 28, pp. 1787-1801. Zbl0705.73238MR1008138
  17. [17] F. BREZZI and M. FORTIN, 1986, Numerical approximation of Mindlin-Reissner plates, Math. Comp., 47, pp. 151-158. Zbl0596.73058MR842127
  18. [18] F. BREZZI and M. FORTIN, 1991, Mixed and Hybrid Finite Element Methods, Springer-Verlag. Zbl0788.73002MR1115205
  19. [19] F. BREZZI, M. FORTIN and R. STENBERG, 1991, Error analysis of mixed-interpolated elements for Reissner-Mindlin plates, Math. Models and Methods in Appl. Sci., 1, pp. 125-151. Zbl0751.73053MR1115287
  20. [20] M. CROUZEIX and P.-A. RAVIART, 1973, Conforming and nonconforming finite element methods for solving the stationary Stokes equations I, R.A.I.R.O., R-3, pp. 33-75. Zbl0302.65087MR343661
  21. [21] P. G. CIARLET, 1978, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam-New York-Oxford. Zbl0383.65058MR520174
  22. [22] R. DURÁN and E. LIEBERMAN, 1992, On mixed finite element methods for the Reissner-Mindlin plate model, Math. Comp., 58, pp. 561-573. Zbl0763.73054MR1106965
  23. [23] R. S. FALK, 1991, Nonconforming finite element methods for the equations of linear elasticity, Math. Comp., 57, pp. 529-550. Zbl0747.73044MR1094947
  24. [24] W. HACKBUSCH, 1985, Multi-Grid Methods and Applications, Springer-Verlag, Heidelberg. Zbl0595.65106MR833988
  25. [25] W. HACKBUSCH, 1980, Analysis and multigrid solutions of mixed finite element and mixed difference equations, Report, Ruhr-Universität Bochum. 
  26. [26] H. HAN, 1986, An analysis of penalty-nonconforming finite element method for Stokes equations, J Comput. Math., 4, pp. 164-172. Zbl0623.76020MR854393
  27. [27] Z. HUANG, 1990, A multi-grid algorithm for mixed problems with penalty, Numer. Math., 57, pp. 227-247. Zbl0712.73106MR1057122
  28. [28] M. JUNG, 1987, Konvergenzfaktoren für Mehrgitterverfahren zur Lösung von Problemen der Ebenen, Linearen Elastizitatstheorie, ZAMM, 67, pp. 165-173. Zbl0619.73086MR887522
  29. [29] S. MCCORMlCK ed., 1987, Multigrid Methods, SIAM Frontiers in Applied Mathematics 3, Society for Industrial and Applied Mathematics, Philadelphia. Zbl0659.65094MR972752
  30. [30] I. D. PARSONS and J. F. HALL, 1990, The multigrid method in solid mechanics; part I - algorithm description and behaviour, Int. J. Numer. Meth. Engrg., 29, pp. 719-738. Zbl0724.73269
  31. [31] P. PEISKER, 1991, A multigrid method for Reissner-Mindlin plates, Numer. Math., 59, pp. 511-528. Zbl0736.73071MR1121656
  32. [32] P. PEISKER and D. BRAESS, 1992, Uniform convergence of mixed interpolated elements for Reissner-Mindlin plates, M2AN, 26, pp. 557-574. Zbl0758.73050MR1177387
  33. [33] P. PEISKER, W. RUST and E. STEIN, 1990, Iterative solution methods for plate bending problems : multigrid and preconditioned cg algorithm, SIAM J. Numer. Anal, 27, pp. 1450-1465. Zbl0721.73040MR1080331
  34. [34] R. VERFÜRTH, 1984, A multilevel algorithm for mixed problems, SIAM J. Numer. Anal, 21, pp. 264-271. Zbl0534.65065MR736330
  35. [35] R. VERFÜRTH, 1988, Multi-level algorithms for mixed problems II, treatment of the mini-clement, SIAM J. Numer. Anal, 25, pp. 285-293. Zbl0669.65083MR933725
  36. [36] S. ZHANG and Z. ZHANG, 1991, Treatment of discontinuity and bublle functions in multigrid methods II, Technical Report 153, Center for Applied Mathematics, Purdue University. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.