Error analysis for the finite element approximation of a radiative transfer model

Christian Führer; Rolf Rannacher

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1996)

  • Volume: 30, Issue: 6, page 743-762
  • ISSN: 0764-583X

How to cite

top

Führer, Christian, and Rannacher, Rolf. "Error analysis for the finite element approximation of a radiative transfer model." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 30.6 (1996): 743-762. <http://eudml.org/doc/193822>.

@article{Führer1996,
author = {Führer, Christian, Rannacher, Rolf},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite element; radiative transfer; weakly singular integral equation; neutron transfer; convergence; error estimates},
language = {eng},
number = {6},
pages = {743-762},
publisher = {Dunod},
title = {Error analysis for the finite element approximation of a radiative transfer model},
url = {http://eudml.org/doc/193822},
volume = {30},
year = {1996},
}

TY - JOUR
AU - Führer, Christian
AU - Rannacher, Rolf
TI - Error analysis for the finite element approximation of a radiative transfer model
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1996
PB - Dunod
VL - 30
IS - 6
SP - 743
EP - 762
LA - eng
KW - finite element; radiative transfer; weakly singular integral equation; neutron transfer; convergence; error estimates
UR - http://eudml.org/doc/193822
ER -

References

top
  1. [1] M. ASADZADEH, 1986, Convergence Analysis of Some Numencal Methods for Neutron Transport and Vlasov Equations, Ph. D. thesis, Chalmers University of Technology, Göteborg, Sweden. 
  2. [2] L. H. AUER, 1984, Difference equations and linearization methods for radiative transfer methods in radiative transfer, Methods in Radiative Transfer, W. Kalk-ofen ed., Cambridge. 
  3. [3] C. CARSTENSEN, E. STEPHAN, A posteriori Estimates tor Boundary Element Methods, to appear in Math. Comp. Zbl0831.65120MR1320892
  4. [4] K. ERIKSSON, C. JOHNSON, 1988, An adaptive finite element method tor linear elliptic problems, Math. Comp., 50, pp. 361-383. Zbl0644.65080MR929542
  5. [5] K. ERIKSSON, C. JOHNSON, 1991, Adaptive finite element methods for parabolic problems I : A linear model problem, SIAM. J. Num. Anal., 28, pp. 43-77. Zbl0732.65093MR1083324
  6. [6] C. FUHRER, 1993, Finite-Elemente-Diskretisterungen zur Lösung der 2D-Strahlungstransportgleiehung, Diploma thesis, Heidelberg University. 
  7. [7] C. FUHRER, 1993, A comparative study on finite element solvers for hyperbolic problems with applications to radiative transfer, Preprint 93-65, SFB 359, Heidelberg University. 
  8. [8] C. FUHRER, G. KANSCHAT, 1994, Error control in radiative transfer, Preprint, Heidelberg University, 6/94 to appear in Computing. Zbl0880.65125MR1461969
  9. [9] I. GRAHAM, 1982, Galerkin methods for second kind integral equations with singularities, Math. Comp., 39, pp. 519-533. Zbl0496.65068MR669644
  10. [10] W. HACKBUSCH, 1989, Integralgleichungen - Theorie und Numerik, Teubner, Stuttgart. Zbl0681.65099MR1010893
  11. [11] C. JOHNSON, J. PITKARANTA, 1983, Convergence of a fuily discrete scheme for two-dimensional neutron transport, SIAM J. Num. Anal., 20, pp. 951-966. Zbl0538.65097MR714690
  12. [12] S. G. MlKHLIN, 1965, Multidimensional Singular Integrals and Integral Equations, Pergamon Press, Oxford. Zbl0129.07701MR185399
  13. [13] P. NELSON, H. P. VICTORY1980, Convergence of two-dimensional Nyström discrete ordinales in solving the linear transport equation, Num. Anal., 34, pp. 353-370. Zbl0414.65074MR577403
  14. [14] J. NlTSCHE, A. SCHATZ, 1974, Interior estimates for Ritz-Galerkin methods, Math. Comp., 28, pp. 937-958. Zbl0298.65071MR373325
  15. [15] PAPKALLA R., 1993, Linienentstehung in Akkretionsscheiben, Ph. D. thesis, Heidelberg University. 
  16. [16] J. PlTKARÄNTA, 1979, On the differential properties of solutions to Fredholm equations with weakly singular kernels, J. Inst. Math. Appl., 24, pp. 109-119. Zbl0423.45004MR544428
  17. [17] I. SLOAN, V. THOMÉE, 1985, Superconvergence of the Galerkin iterates forintegral equations of the second kind, J. Int. Eqs., 9, pp. 1-230. Zbl0575.65131MR793101
  18. [18] S. TUREK, 1995A generalized mean intensity approach for the numerical solution of the radiative transfer equation, Computing, 54, Nr. 1, 27-38. Zbl0822.65129MR1314954
  19. [19] W. L. WENDLAND, YU DE-HAO, 1992A posteriori local error estimates of boundary element methods with some pseudo differential equations on closed curves, J. Comp. Math. 10, Nr. 3, pp. 273-289. Zbl0758.65072MR1167929

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.