Error analysis for the finite element approximation of a radiative transfer model
Christian Führer; Rolf Rannacher
- Volume: 30, Issue: 6, page 743-762
- ISSN: 0764-583X
Access Full Article
topHow to cite
topFührer, Christian, and Rannacher, Rolf. "Error analysis for the finite element approximation of a radiative transfer model." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 30.6 (1996): 743-762. <http://eudml.org/doc/193822>.
@article{Führer1996,
author = {Führer, Christian, Rannacher, Rolf},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite element; radiative transfer; weakly singular integral equation; neutron transfer; convergence; error estimates},
language = {eng},
number = {6},
pages = {743-762},
publisher = {Dunod},
title = {Error analysis for the finite element approximation of a radiative transfer model},
url = {http://eudml.org/doc/193822},
volume = {30},
year = {1996},
}
TY - JOUR
AU - Führer, Christian
AU - Rannacher, Rolf
TI - Error analysis for the finite element approximation of a radiative transfer model
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1996
PB - Dunod
VL - 30
IS - 6
SP - 743
EP - 762
LA - eng
KW - finite element; radiative transfer; weakly singular integral equation; neutron transfer; convergence; error estimates
UR - http://eudml.org/doc/193822
ER -
References
top- [1] M. ASADZADEH, 1986, Convergence Analysis of Some Numencal Methods for Neutron Transport and Vlasov Equations, Ph. D. thesis, Chalmers University of Technology, Göteborg, Sweden.
- [2] L. H. AUER, 1984, Difference equations and linearization methods for radiative transfer methods in radiative transfer, Methods in Radiative Transfer, W. Kalk-ofen ed., Cambridge.
- [3] C. CARSTENSEN, E. STEPHAN, A posteriori Estimates tor Boundary Element Methods, to appear in Math. Comp. Zbl0831.65120MR1320892
- [4] K. ERIKSSON, C. JOHNSON, 1988, An adaptive finite element method tor linear elliptic problems, Math. Comp., 50, pp. 361-383. Zbl0644.65080MR929542
- [5] K. ERIKSSON, C. JOHNSON, 1991, Adaptive finite element methods for parabolic problems I : A linear model problem, SIAM. J. Num. Anal., 28, pp. 43-77. Zbl0732.65093MR1083324
- [6] C. FUHRER, 1993, Finite-Elemente-Diskretisterungen zur Lösung der 2D-Strahlungstransportgleiehung, Diploma thesis, Heidelberg University.
- [7] C. FUHRER, 1993, A comparative study on finite element solvers for hyperbolic problems with applications to radiative transfer, Preprint 93-65, SFB 359, Heidelberg University.
- [8] C. FUHRER, G. KANSCHAT, 1994, Error control in radiative transfer, Preprint, Heidelberg University, 6/94 to appear in Computing. Zbl0880.65125MR1461969
- [9] I. GRAHAM, 1982, Galerkin methods for second kind integral equations with singularities, Math. Comp., 39, pp. 519-533. Zbl0496.65068MR669644
- [10] W. HACKBUSCH, 1989, Integralgleichungen - Theorie und Numerik, Teubner, Stuttgart. Zbl0681.65099MR1010893
- [11] C. JOHNSON, J. PITKARANTA, 1983, Convergence of a fuily discrete scheme for two-dimensional neutron transport, SIAM J. Num. Anal., 20, pp. 951-966. Zbl0538.65097MR714690
- [12] S. G. MlKHLIN, 1965, Multidimensional Singular Integrals and Integral Equations, Pergamon Press, Oxford. Zbl0129.07701MR185399
- [13] P. NELSON, H. P. VICTORY1980, Convergence of two-dimensional Nyström discrete ordinales in solving the linear transport equation, Num. Anal., 34, pp. 353-370. Zbl0414.65074MR577403
- [14] J. NlTSCHE, A. SCHATZ, 1974, Interior estimates for Ritz-Galerkin methods, Math. Comp., 28, pp. 937-958. Zbl0298.65071MR373325
- [15] PAPKALLA R., 1993, Linienentstehung in Akkretionsscheiben, Ph. D. thesis, Heidelberg University.
- [16] J. PlTKARÄNTA, 1979, On the differential properties of solutions to Fredholm equations with weakly singular kernels, J. Inst. Math. Appl., 24, pp. 109-119. Zbl0423.45004MR544428
- [17] I. SLOAN, V. THOMÉE, 1985, Superconvergence of the Galerkin iterates forintegral equations of the second kind, J. Int. Eqs., 9, pp. 1-230. Zbl0575.65131MR793101
- [18] S. TUREK, 1995A generalized mean intensity approach for the numerical solution of the radiative transfer equation, Computing, 54, Nr. 1, 27-38. Zbl0822.65129MR1314954
- [19] W. L. WENDLAND, YU DE-HAO, 1992A posteriori local error estimates of boundary element methods with some pseudo differential equations on closed curves, J. Comp. Math. 10, Nr. 3, pp. 273-289. Zbl0758.65072MR1167929
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.