Particle simulation and asymptotic analysis of kinetic equations for modeling a Schottky diode
P. Degond; F. Poupaud; A. Yamnahakki
- Volume: 30, Issue: 6, page 763-795
- ISSN: 0764-583X
Access Full Article
topHow to cite
topDegond, P., Poupaud, F., and Yamnahakki, A.. "Particle simulation and asymptotic analysis of kinetic equations for modeling a Schottky diode." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 30.6 (1996): 763-795. <http://eudml.org/doc/193823>.
@article{Degond1996,
author = {Degond, P., Poupaud, F., Yamnahakki, A.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {kinetic equations; deterministic particle simulations; Boltzmann transport equation; Schottky diode problem; asymptotic analysis; numerical results},
language = {eng},
number = {6},
pages = {763-795},
publisher = {Dunod},
title = {Particle simulation and asymptotic analysis of kinetic equations for modeling a Schottky diode},
url = {http://eudml.org/doc/193823},
volume = {30},
year = {1996},
}
TY - JOUR
AU - Degond, P.
AU - Poupaud, F.
AU - Yamnahakki, A.
TI - Particle simulation and asymptotic analysis of kinetic equations for modeling a Schottky diode
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1996
PB - Dunod
VL - 30
IS - 6
SP - 763
EP - 795
LA - eng
KW - kinetic equations; deterministic particle simulations; Boltzmann transport equation; Schottky diode problem; asymptotic analysis; numerical results
UR - http://eudml.org/doc/193823
ER -
References
top- [1] E. M. AZOFF, 1987Generalized energy moment equation in the relaxation time approximation, Solid Stat. Electr. 30, pp. 913-917.
- [2] G. BACCARANI and M. R. WORDEMAN, 1982, An investigation of steady-state velocity overshoot effects in Si and GaAs devices, Solid-State Electron, 29, pp. 970-977.
- [3] N. BEN ABDALLAH, Convergence of the Child Langmuir asymptotics of the Boltzmann equation of semiconductors, SIAM. J. on Math. Anal., to appear. Zbl0847.35009MR1373149
- [4] N. BEN ABDALLAH and P. DEGOND, 1995, The Child-Langmuir for the Boltzmann equation ot semiconductors, SIAM. J. Math. Anal. 26, pp. 364 398. Zbl0828.35131MR1320225
- [5] N. BEN ABDALLAH, P. DEGOND and A. YAMNAHAKKI, 1996. The Child-Langmir low as a model for election transport in semiconductors , Solid State electronics, 39, pp. 737-744.
- [6] BIRDSALL and LANGDON, 1985, Plasma Physics via Computer Simulations, McGrawHill, New-York.
- [7] J. U. BRACKBILL and D. W. FORSLUND, 1982, J. Comput. Phys., 46, p. 271. Zbl0489.76127MR672909
- [8] A. BRINCER and G. SCHÖN, 1988, Extended moment equations for electron transport in semiconducting submicron structures. J. Appl. Phys., 61, pp. 2445-2455.
- [9] G. H. COTTET, 1987, Analyse numérique des méthodes particulaires pour certains problèmes non linéaires, Thèse d'état, Université Paris 6.
- [10] P. DEGOND, 1994, The Child-Langmuir law in the kinetic theory of charges particles Part I electron flows in vacuum in Advances in Kinetic Theory and Computing B. Perthame (ed.), World Scientific, Singapore. Zbl0863.76091MR1323180
- [11] P. DEGOND, F. DELAURENS and F. J. MUSTIELES, 1991, in Computer Methods in Applied Sciences and Engineering, R. Glowinski and A. Lichnewsky (eds), SIAM, Philadelphia.
- [12] P. DEGOND and F. J. MUSTIELES, 1991, Solid State Electron, 34, pp. 1335-1345.
- [13] P. DEGOND, B. NICLOT and F. POUPAUD, 1988, J. Comput. Phys., 78,pp. 313. Zbl0662.65126
- [14] P. DEGOND and P.-A. RAVIART, 1991, An asymptotic analysis of the one-dimensional Vlasov-Poisson system the Child-Langmuir law, Asymptotic Analysis 4, pp. 187-214. Zbl0840.35082MR1115929
- [15] P. DEGOND, S. JAIFARD, F. POUPAUD and P.-A. RAVIART, 1996, The Child-Langmuir asymptotics of the Vlasov-Poisson equation for cylindrically or Spherically symmetric diodes, Part I statement of the problem and basic estimates, Part II Analysis of the reduced problem and determination of the Child Langmuir current. Math. Meth. Appl. Sci. 19, pp. 287-340. Zbl0844.35087MR1375208
- [16] P DEGOND, C. SCHMEISER and A. YAMNAHAKKI, A mathematical analysis of a multidimensional Shottky diode, Asymptotic Analysis to appear. Zbl0866.35119
- [17] F. DELAURENS and F. J. MUSTIELES1992A deterministic particle method for solving kinetic transport equations the semiconductor Boltzmann equation case, SIAM. J. Appl. Math. 52, pp. 973-988. Zbl0755.65132MR1174041
- [18] C. L. GARDNER, J. W. JEROME, D. J. ROSE1989, Numerical methods for the hydrodynamic device model: Subsonic flow, ILEE Trans. Comp. Design. 8, pp. 501-507.
- [19] C. GREENGARD and P. A. RAVIART1993A Boundary value problem for the stationary Vlasov-Poisson equations the plane diode, Comm. Pure. Appl. Math. 43, pp. 473-507. Zbl0721.35084MR1047333
- [20] F. GUYOT-DELAURENS, 1990, Ph. D. thesis, Ecole Polytechnique, Palaiseau.
- [21] P. HESTO, 1984, Simulation Monte-Carlo du transport non stationnaire dans les dispositifs submicroniques importance du phénomène balistique dans GaAs à 77 K, Ph-D thesis Paris-sud, Orsay.
- [22] R. W. HOCKNEY and J. W. EASTWOOD1981, Computer Simulation using Particles, McGrawHill, New York. Zbl0662.76002
- [23] J. W. JEROME and CHI-WANG SHU, Energy Models tor One-Carrier Transport in Semiconductor Devices, Preprint. Zbl0946.76516
- [24] S. MAS-GALUC, 1987, Transp. Theory Stat. Physics, 16, pp. 855. Zbl0658.76075
- [25] P. A. MARKOWICH, 1986The stationary semiconductor device equations, Springer, Wien, New York. MR821965
- [26] P. A. MARKOWICH, 1990, C. Ringhofer and C. Schmeiser, Semiconductor equations, Springer, Wien, New York. Zbl0765.35001MR1063852
- [27] H. NEUZERT and J. WICK, 1980, in Mathematical Methods of Plasma Physics, R. Kress and J. Wick (eds), Verlag Peter D. Lang, Frankfurt. Zbl0508.00012MR713641
- [28] F. POUPAUD, 1991, Derivation of a hydrodynamic Systems hierarchy from the Boltzmann equation, Appl. Math. Letters 4, pp. 75-79. Zbl0733.35102MR1088041
- [29] F. POUPAUD1992, Boundary value problems for the stationary Vlasov-Maxwell System, Forum Math. 4, pp. 499-527. Zbl0785.35020MR1176884
- [30] A. YAMNAHAKKI1995, Second order boundary conditions for Drilt Diffusion equations of semi conductor , Math. Mod. Meth. Appl. Sci. 5, pp. 429-455. Zbl0830.65117MR1335827
- [31] P. A. RAVIART, 1985An Analysis of particle methods in Fluid Dynamics, F. Brezzi ed., L. N. in Math. 1127, Springer-Verlag, Berlin. Zbl0598.76003MR802214
- [32] L. REGGIANI (ed), 1985, Hot electron transport in semiconductors, Springer, Berlin.
- [33] S. SELBERHERR, 1985, Analysis and simulation of semiconductor devices, Springer Berlin, New York.
- [34] S. M. SZE, 1981, Physics of semiconductor devices, Wiley, New York, 2nd edition.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.