Particle simulation and asymptotic analysis of kinetic equations for modeling a Schottky diode

P. Degond; F. Poupaud; A. Yamnahakki

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1996)

  • Volume: 30, Issue: 6, page 763-795
  • ISSN: 0764-583X

How to cite

top

Degond, P., Poupaud, F., and Yamnahakki, A.. "Particle simulation and asymptotic analysis of kinetic equations for modeling a Schottky diode." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 30.6 (1996): 763-795. <http://eudml.org/doc/193823>.

@article{Degond1996,
author = {Degond, P., Poupaud, F., Yamnahakki, A.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {kinetic equations; deterministic particle simulations; Boltzmann transport equation; Schottky diode problem; asymptotic analysis; numerical results},
language = {eng},
number = {6},
pages = {763-795},
publisher = {Dunod},
title = {Particle simulation and asymptotic analysis of kinetic equations for modeling a Schottky diode},
url = {http://eudml.org/doc/193823},
volume = {30},
year = {1996},
}

TY - JOUR
AU - Degond, P.
AU - Poupaud, F.
AU - Yamnahakki, A.
TI - Particle simulation and asymptotic analysis of kinetic equations for modeling a Schottky diode
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1996
PB - Dunod
VL - 30
IS - 6
SP - 763
EP - 795
LA - eng
KW - kinetic equations; deterministic particle simulations; Boltzmann transport equation; Schottky diode problem; asymptotic analysis; numerical results
UR - http://eudml.org/doc/193823
ER -

References

top
  1. [1] E. M. AZOFF, 1987Generalized energy moment equation in the relaxation time approximation, Solid Stat. Electr. 30, pp. 913-917. 
  2. [2] G. BACCARANI and M. R. WORDEMAN, 1982, An investigation of steady-state velocity overshoot effects in Si and GaAs devices, Solid-State Electron, 29, pp. 970-977. 
  3. [3] N. BEN ABDALLAH, Convergence of the Child Langmuir asymptotics of the Boltzmann equation of semiconductors, SIAM. J. on Math. Anal., to appear. Zbl0847.35009MR1373149
  4. [4] N. BEN ABDALLAH and P. DEGOND, 1995, The Child-Langmuir for the Boltzmann equation ot semiconductors, SIAM. J. Math. Anal. 26, pp. 364 398. Zbl0828.35131MR1320225
  5. [5] N. BEN ABDALLAH, P. DEGOND and A. YAMNAHAKKI, 1996. The Child-Langmir low as a model for election transport in semiconductors , Solid State electronics, 39, pp. 737-744. 
  6. [6] BIRDSALL and LANGDON, 1985, Plasma Physics via Computer Simulations, McGrawHill, New-York. 
  7. [7] J. U. BRACKBILL and D. W. FORSLUND, 1982, J. Comput. Phys., 46, p. 271. Zbl0489.76127MR672909
  8. [8] A. BRINCER and G. SCHÖN, 1988, Extended moment equations for electron transport in semiconducting submicron structures. J. Appl. Phys., 61, pp. 2445-2455. 
  9. [9] G. H. COTTET, 1987, Analyse numérique des méthodes particulaires pour certains problèmes non linéaires, Thèse d'état, Université Paris 6. 
  10. [10] P. DEGOND, 1994, The Child-Langmuir law in the kinetic theory of charges particles Part I electron flows in vacuum in Advances in Kinetic Theory and Computing B. Perthame (ed.), World Scientific, Singapore. Zbl0863.76091MR1323180
  11. [11] P. DEGOND, F. DELAURENS and F. J. MUSTIELES, 1991, in Computer Methods in Applied Sciences and Engineering, R. Glowinski and A. Lichnewsky (eds), SIAM, Philadelphia. 
  12. [12] P. DEGOND and F. J. MUSTIELES, 1991, Solid State Electron, 34, pp. 1335-1345. 
  13. [13] P. DEGOND, B. NICLOT and F. POUPAUD, 1988, J. Comput. Phys., 78,pp. 313. Zbl0662.65126
  14. [14] P. DEGOND and P.-A. RAVIART, 1991, An asymptotic analysis of the one-dimensional Vlasov-Poisson system the Child-Langmuir law, Asymptotic Analysis 4, pp. 187-214. Zbl0840.35082MR1115929
  15. [15] P. DEGOND, S. JAIFARD, F. POUPAUD and P.-A. RAVIART, 1996, The Child-Langmuir asymptotics of the Vlasov-Poisson equation for cylindrically or Spherically symmetric diodes, Part I statement of the problem and basic estimates, Part II Analysis of the reduced problem and determination of the Child Langmuir current. Math. Meth. Appl. Sci. 19, pp. 287-340. Zbl0844.35087MR1375208
  16. [16] P DEGOND, C. SCHMEISER and A. YAMNAHAKKI, A mathematical analysis of a multidimensional Shottky diode, Asymptotic Analysis to appear. Zbl0866.35119
  17. [17] F. DELAURENS and F. J. MUSTIELES1992A deterministic particle method for solving kinetic transport equations the semiconductor Boltzmann equation case, SIAM. J. Appl. Math. 52, pp. 973-988. Zbl0755.65132MR1174041
  18. [18] C. L. GARDNER, J. W. JEROME, D. J. ROSE1989, Numerical methods for the hydrodynamic device model: Subsonic flow, ILEE Trans. Comp. Design. 8, pp. 501-507. 
  19. [19] C. GREENGARD and P. A. RAVIART1993A Boundary value problem for the stationary Vlasov-Poisson equations the plane diode, Comm. Pure. Appl. Math. 43, pp. 473-507. Zbl0721.35084MR1047333
  20. [20] F. GUYOT-DELAURENS, 1990, Ph. D. thesis, Ecole Polytechnique, Palaiseau. 
  21. [21] P. HESTO, 1984, Simulation Monte-Carlo du transport non stationnaire dans les dispositifs submicroniques importance du phénomène balistique dans GaAs à 77 K, Ph-D thesis Paris-sud, Orsay. 
  22. [22] R. W. HOCKNEY and J. W. EASTWOOD1981, Computer Simulation using Particles, McGrawHill, New York. Zbl0662.76002
  23. [23] J. W. JEROME and CHI-WANG SHU, Energy Models tor One-Carrier Transport in Semiconductor Devices, Preprint. Zbl0946.76516
  24. [24] S. MAS-GALUC, 1987, Transp. Theory Stat. Physics, 16, pp. 855. Zbl0658.76075
  25. [25] P. A. MARKOWICH, 1986The stationary semiconductor device equations, Springer, Wien, New York. MR821965
  26. [26] P. A. MARKOWICH, 1990, C. Ringhofer and C. Schmeiser, Semiconductor equations, Springer, Wien, New York. Zbl0765.35001MR1063852
  27. [27] H. NEUZERT and J. WICK, 1980, in Mathematical Methods of Plasma Physics, R. Kress and J. Wick (eds), Verlag Peter D. Lang, Frankfurt. Zbl0508.00012MR713641
  28. [28] F. POUPAUD, 1991, Derivation of a hydrodynamic Systems hierarchy from the Boltzmann equation, Appl. Math. Letters 4, pp. 75-79. Zbl0733.35102MR1088041
  29. [29] F. POUPAUD1992, Boundary value problems for the stationary Vlasov-Maxwell System, Forum Math. 4, pp. 499-527. Zbl0785.35020MR1176884
  30. [30] A. YAMNAHAKKI1995, Second order boundary conditions for Drilt Diffusion equations of semi conductor , Math. Mod. Meth. Appl. Sci. 5, pp. 429-455. Zbl0830.65117MR1335827
  31. [31] P. A. RAVIART, 1985An Analysis of particle methods in Fluid Dynamics, F. Brezzi ed., L. N. in Math. 1127, Springer-Verlag, Berlin. Zbl0598.76003MR802214
  32. [32] L. REGGIANI (ed), 1985, Hot electron transport in semiconductors, Springer, Berlin. 
  33. [33] S. SELBERHERR, 1985, Analysis and simulation of semiconductor devices, Springer Berlin, New York. 
  34. [34] S. M. SZE, 1981, Physics of semiconductor devices, Wiley, New York, 2nd edition. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.