A hierarchy of hydrodynamic models for plasmas. Zero-electron-mass limits in the drift-diffusion equations
We study existence and nonexistence of solutions (both stationary and evolution) for a parabolic-elliptic system describing the electrodiffusion of ions. In this model the evolution of temperature is also taken into account. For stationary states the existence of an external potential is also assumed.
The modelling and the numerical resolution of the electrical charging of a spacecraft in interaction with the Earth magnetosphere is considered. It involves the Vlasov-Poisson system, endowed with non standard boundary conditions. We discuss the pros and cons of several numerical methods for solving this system, using as benchmark a simple 1D model which exhibits the main difficulties of the original models.
Transport phenomena of minority carriers in quasi neutral regions of heavily doped semiconductors are considered for the case of one-dimensional stationary flow and their study is reduced to a Fredholm integral equation of the second kind, the kernel and the known term of which are built from known functions of the doping arbitrarily distributed in space. The advantage of the method consists, among other things, in having all the coefficients of the differential equations and of the boundary conditions...
The self-organization of porous nanostructures in anodic metal oxide is considered. A mathematical model which incorporates the chemical reactions at the metal-oxide and oxide-electrolyte interfaces and elastic stress caused by the electrostrictive effects is developed. It is shown through linear stability analysis, that a short-wave instability exists in certain parameter regimes which can lead to the formation of hexagonally ordered pores observed in anodized aluminum oxide.
We investigate a system describing electrically charged particles in the whole space ℝ². Our main goal is to describe large time behavior of solutions which start their evolution from initial data of small size. This is achieved using radially symmetric self-similar solutions.
The topic of this paper is the numerical analysis of time periodic solution for electro-magnetic phenomena. The Limit Absorption Method (LAM) which forms the basis of our study is presented. Theoretical results have been proved in the linear finite dimensional case. This method is applied to scattering problems and transport of charged particles.
The topic of this paper is the numerical analysis of time periodic solution for electro-magnetic phenomena. The Limit Absorption Method (LAM) which forms the basis of our study is presented. Theoretical results have been proved in the linear finite dimensional case. This method is applied to scattering problems and transport of charged particles.
The author proves the existence of solution of Van Roosbroeck's system of partial differential equations from the theory of semiconductors. His results generalize those of Mock, Gajewski and Seidman.
In this work, we propose the Shannon wavelets approximation for the numerical solution of a class of integro-differential equations which describe the charged particle motion for certain configurations of oscillating magnetic fields. We show that using the Galerkin method and the connection coefficients of the Shannon wavelets, the problem is transformed to an infinite algebraic system, which can be solved by fixing a finite scale of approximation. The error analysis of the method is also investigated....