A Schwarz auditive method with high order interface conditions and nonoverlapping subdomains

Frédéric Nataf

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1998)

  • Volume: 32, Issue: 1, page 107-116
  • ISSN: 0764-583X

How to cite

top

Nataf, Frédéric. "A Schwarz auditive method with high order interface conditions and nonoverlapping subdomains." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.1 (1998): 107-116. <http://eudml.org/doc/193863>.

@article{Nataf1998,
author = {Nataf, Frédéric},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {additive Schwarz method; high-order interface conditions; nonoverlapping subdomains; heat equation; convergence; interface operator},
language = {eng},
number = {1},
pages = {107-116},
publisher = {Dunod},
title = {A Schwarz auditive method with high order interface conditions and nonoverlapping subdomains},
url = {http://eudml.org/doc/193863},
volume = {32},
year = {1998},
}

TY - JOUR
AU - Nataf, Frédéric
TI - A Schwarz auditive method with high order interface conditions and nonoverlapping subdomains
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 1
SP - 107
EP - 116
LA - eng
KW - additive Schwarz method; high-order interface conditions; nonoverlapping subdomains; heat equation; convergence; interface operator
UR - http://eudml.org/doc/193863
ER -

References

top
  1. [1] B. DESPRES, Domain Decomposition Method and the Helmholtz Problem, Mathematical and Numerical aspects of wave propagation phenomena, SIAM (1991), 44-52. MR1105979
  2. [2] B. ENGQUIST and A. MAJDA, Absorbing Boundary Conditions for the Numerical Simulation of Waves, Math. Comp. 31 (139), (1977), 629-651. Zbl0367.65051MR436612
  3. [3] P. GRISVARD, Singularities in Boundary Value Problems, RMA 22, Masson & Springer Verlag (1992). Zbl0766.35001MR1173209
  4. [4] T. HAGSTROM, R. P. TEWARSON and A. JAZCILEVICH, Numerical Experiments on a Domain Decomposition Algorithm for Nonlinear Elliptic Boundary Value Problems, Appl. Math. Lett, 1, No 3 (1988), 299-302. Zbl0656.65097MR963704
  5. [5] K. LEMRABET, Problèmes aux limites de Ventcel dans un domaine non régulier, C.R. Acad. Sc. Paris, t. 300, Série I, n° 15, (1985), 531-534. Zbl0601.35024MR792383
  6. [6] J. L. LIONS and E. MAGENES, Problèmes aux limites non homogènes et applications, vol. 1, Dunod, Paris, (1968). Zbl0165.10801MR247243
  7. [7] P. L. LIONS, On the Schwarz Altemating Method III: A Variant for Nonoverlapping Subdomains, Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, SIAM (1989), 202-223. Zbl0704.65090MR1064345
  8. [8] F. NATAF and F. ROGIER, Outflow Boundary Conditions and Domain Decomposition Method, Cont. math. 180,"Proceedings of the Seventh International Conference on Domain Décomposition", (1993), 289-293. Zbl0817.65077MR1312404
  9. [9] F. NATAF, F. ROGIER and E. de STURLER, Domain Decomposition Methods for Fluid Dynamics, Navier-Stokes Equations and Related Nonlinear Analysis, Edited by A. Sequeira, Plenum Press Corporation, (1995), 367-376. Zbl0861.76070MR1373229
  10. [10] F. NATAF and F. ROGIER, Factorization of the Convection-Diffusion Operator and the Schwarz Algorithm, M3AS, 5, No 1, (1995), 67-93. Zbl0826.65102MR1314997

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.