Incremental unknowns method and compact schemes

Jean-Paul Chehab

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1998)

  • Volume: 32, Issue: 1, page 51-83
  • ISSN: 0764-583X

How to cite

top

Chehab, Jean-Paul. "Incremental unknowns method and compact schemes." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.1 (1998): 51-83. <http://eudml.org/doc/193867>.

@article{Chehab1998,
author = {Chehab, Jean-Paul},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {elliptic problems; nonlinear Galerkin method; compact scheme discretization; incremental unknowns method; preconditioning; numerical results; data compression method; Dirichlet problems},
language = {eng},
number = {1},
pages = {51-83},
publisher = {Dunod},
title = {Incremental unknowns method and compact schemes},
url = {http://eudml.org/doc/193867},
volume = {32},
year = {1998},
}

TY - JOUR
AU - Chehab, Jean-Paul
TI - Incremental unknowns method and compact schemes
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 1
SP - 51
EP - 83
LA - eng
KW - elliptic problems; nonlinear Galerkin method; compact scheme discretization; incremental unknowns method; preconditioning; numerical results; data compression method; Dirichlet problems
UR - http://eudml.org/doc/193867
ER -

References

top
  1. [1] R. E. BANK, T. F. DUPONT, H. YSERENTANTThe Hierarchical Basis Multigrid Method, Numer. Math. 52, 1988, 4227-458. Zbl0645.65074MR932709
  2. [2] M. H. CARPENTER, D. GOTTLIEB, S. ABARBANEL, Time-Stable Boundary Conditions for Finite Difference Schemes Solving Hyperbolic Systems: Methodology and Application to High-Order Compact Schemes, J. comp. Phys. 111, 1994, 220-236. Zbl0832.65098MR1275021
  3. [3] J. P. CHEHAB, R. TEMAMIncremental Unknowns for Solving Nonlinear Eigenvalue Problems. New Multiresolution Methods, Numencal Methods for PDE's, 11, 199-228 (1995). Zbl0828.65124MR1325394
  4. [4] J. P. CHEHABA Nonlinear Adaptative Multiresolution Method in Finite Differences with Incremental Unknowns, M2AN, Vol. 29, 4, 451-475, 1995. Zbl0836.65114MR1346279
  5. [5] J. P. CHEHABSolution of Generalized Stokes Problems Using Hierarchical Methods and Incremental Unknowns, App. Num. Math., 21 (1996) 9-42. Zbl0853.76044MR1418694
  6. [6] M. CHEN, A. MIRANVILLE, R. TEMAMIncremental Unknows in Finite Differences in Space Dimension 3, Computational and Applied Mathematics, 14, 3, 1995, 1-15. MR1384185
  7. [7] M. CHEN, R. TEMAMIncremental Unknows for Solving Partial Differential Equations, Numesrische Mathematik, Springer Verlag, 59, 1991, 255-271. Zbl0712.65103MR1106383
  8. [8] M. CHEN, R. TEMAMIncremental Unknows in Finite Differences: Condition Number of the Matrix, SIAM. J. on Matrix Analysis and Applications (SIMAX), 14, n° 2, 1993, 432-455. Zbl0773.65080MR1211799
  9. [9] M. CHEN, R. TEMAMNonLinear Galerkin Method in Finite Difference case and Wavelet-like Incremental Unknowns, Numer. Math. 64, 1993, 271-294. Zbl0798.65093MR1206665
  10. [10] B. COCKBURN, C. W. SHUNonlinearly Stable Compact Schemes for shock calculations, ICASE Preprint series, May 1992. Zbl0805.65085MR1275104
  11. [11] L. COLLATZThe Numerical Treatment of Differential Equations, 3rd. ed., Springer Verlag, 1966. Zbl0086.32601MR109436
  12. [12] A. DEBUSSCHE, T. DUBOIS, R. TEMAMThe Nonlinear Galerkin Method: A Multiscale Method Applied to the Simulationof Homogeneous Turbulent Flows, Theorical and Computational Fluid Dynamics 7, 4, 1995, 279-315. Zbl0838.76060
  13. [13] S. K. LELECompact Finite Difference Schemes with Spectral like Resolution, J. Comp. Phys., 103, 16-42, 1992. Zbl0759.65006MR1188088
  14. [14] J. L. LIONS R. TEMAM, S. WANG, Splitting Up Methods and Numerical Analysis of Some Multiscale Problems, Computational Fluid Dynamics J, 5, 2, 1996, 279-315. 
  15. [15] M. MARION, R. TEMAMNonlinear Galerkin Methods, SIAM Journal of Numencal Analysis, 26, 1989, 1139-1157. Zbl0683.65083MR1014878
  16. [16] M. MARION, R. TEMAMNonlinear Galerkin Methods; The Finite Elements Case, Numensche Mathematik, 57, 1990, 205-226. Zbl0702.65081MR1057121
  17. [17] R. TEMAMInertial Manifolds and Multigrid Methods, SIAM. J. Math. Anal. 21, 1990, 154-178. Zbl0715.35039MR1032732
  18. [18] R. TEMAMInfinite Dimensional Dynamical Systems in Mechantes and Physics, Applied Mathematical Science, Springer Verlag, 68, 1988. Zbl0662.35001MR953967
  19. [19] H. A. VAN DER VORST. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear System, SIAM. J. Sci. Stat. Comput., 13 (1992) 631-644. Zbl0761.65023MR1149111
  20. [20] H. YSERENTANT. On Multilevel Splitting of Finite Element Spaces, Numer. Math. 49, 1986, 379-412. Zbl0608.65065MR853662

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.