A nonlinear adaptative multiresolution method in finite differences with incremental unknowns
- Volume: 29, Issue: 4, page 451-475
- ISSN: 0764-583X
Access Full Article
topHow to cite
topChehab, Jean-Paul. "A nonlinear adaptative multiresolution method in finite differences with incremental unknowns." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 29.4 (1995): 451-475. <http://eudml.org/doc/193781>.
@article{Chehab1995,
author = {Chehab, Jean-Paul},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {nonlinear adaptive multiresolution method; finite differences with incremental unknowns; unstable solutions; nonlinear eigenfunction problems; Marder-Weitzner scheme; nonlinear Richardson method; linear Richardson algorithms; convergence},
language = {eng},
number = {4},
pages = {451-475},
publisher = {Dunod},
title = {A nonlinear adaptative multiresolution method in finite differences with incremental unknowns},
url = {http://eudml.org/doc/193781},
volume = {29},
year = {1995},
}
TY - JOUR
AU - Chehab, Jean-Paul
TI - A nonlinear adaptative multiresolution method in finite differences with incremental unknowns
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1995
PB - Dunod
VL - 29
IS - 4
SP - 451
EP - 475
LA - eng
KW - nonlinear adaptive multiresolution method; finite differences with incremental unknowns; unstable solutions; nonlinear eigenfunction problems; Marder-Weitzner scheme; nonlinear Richardson method; linear Richardson algorithms; convergence
UR - http://eudml.org/doc/193781
ER -
References
top- [1] C. BOLLEY, 1978, Multiple Solutions of a Bifurcation Problem, in Bifurcation and Nonlinear Eigenvalue Problems, ed. C. Bardos, Proceedings Univ. Paris XIII Villetaneuse, Springer Verlag, n° 782, 42-53. Zbl0435.35012MR572250
- [2] J.-P. CHEHAB, R. TEMAM, Incremental Unknowns for Solving Nonlinear Eigenvalue Problems. New Multiresolution Methods, Numerical Methods for PDE's, 11, 199-228 (1995). Zbl0828.65124MR1325394
- [3] M. CHEN, R. TEMAM, 1991, Incremental Unknowns for Solving Partial Differential Equations, Numerische Matematik, 59, 255-271. Zbl0712.65103MR1106383
- [4] M. CHEN, R. TEMAM, 1993, Incremental Unknowns in Finite Differences : Condition Number of the Matrix, SIAM J. of Matrix Analysis and Applications (SIMAX), 14, n° 2, 432-455. Zbl0773.65080MR1211799
- [5] G. H. GOLUB, G. A. MEURANT, 1983, Résolution numérique des grands systèmes linéaires, Ecole d'été d'Analyse Numérique CEA-EDF-INRIA, Eyrolles. Zbl0646.65022MR756627
- [6] D. HENRY, 1981, Geometric Theory of Semilinear Parabolic Equations, Springer Verlag, n° 840. Zbl0456.35001MR610244
- [7] H. MARDER, B. WEITZNER, 1970, A Bifurcation Problem in E-layer Equilibria, Plasma Physics, 12, 435-445. Zbl0195.29002
- [8] M. MARION, R. TEMAM, 1989, Nonlinear Galerkin Methods, SIAM Journal of Numerical Analysis, 26, 1139-1157. Zbl0683.65083MR1014878
- [9] M. MARION, R. TEMAM, 1990, Nonlinear Galerkin Methods ; The Finite elements case, Numerische Matematik, 57, 205-226. Zbl0702.65081MR1057121
- [10] M. SERMANGE, 1979, Une méthode numérique en bifurcation. Application à un problème à frontière libre de la physique des plasmas, Applied Mathematics and Optimization, 127-151. Zbl0393.65026MR533616
- [11] R. TEMAM, 1990, Inertial Manifolds and Multigrid Methods, SIAM J. Math. Anal, 21, 154-178. Zbl0715.35039MR1032732
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.