A nonlinear adaptative multiresolution method in finite differences with incremental unknowns

Jean-Paul Chehab

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1995)

  • Volume: 29, Issue: 4, page 451-475
  • ISSN: 0764-583X

How to cite

top

Chehab, Jean-Paul. "A nonlinear adaptative multiresolution method in finite differences with incremental unknowns." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 29.4 (1995): 451-475. <http://eudml.org/doc/193781>.

@article{Chehab1995,
author = {Chehab, Jean-Paul},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {nonlinear adaptive multiresolution method; finite differences with incremental unknowns; unstable solutions; nonlinear eigenfunction problems; Marder-Weitzner scheme; nonlinear Richardson method; linear Richardson algorithms; convergence},
language = {eng},
number = {4},
pages = {451-475},
publisher = {Dunod},
title = {A nonlinear adaptative multiresolution method in finite differences with incremental unknowns},
url = {http://eudml.org/doc/193781},
volume = {29},
year = {1995},
}

TY - JOUR
AU - Chehab, Jean-Paul
TI - A nonlinear adaptative multiresolution method in finite differences with incremental unknowns
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1995
PB - Dunod
VL - 29
IS - 4
SP - 451
EP - 475
LA - eng
KW - nonlinear adaptive multiresolution method; finite differences with incremental unknowns; unstable solutions; nonlinear eigenfunction problems; Marder-Weitzner scheme; nonlinear Richardson method; linear Richardson algorithms; convergence
UR - http://eudml.org/doc/193781
ER -

References

top
  1. [1] C. BOLLEY, 1978, Multiple Solutions of a Bifurcation Problem, in Bifurcation and Nonlinear Eigenvalue Problems, ed. C. Bardos, Proceedings Univ. Paris XIII Villetaneuse, Springer Verlag, n° 782, 42-53. Zbl0435.35012MR572250
  2. [2] J.-P. CHEHAB, R. TEMAM, Incremental Unknowns for Solving Nonlinear Eigenvalue Problems. New Multiresolution Methods, Numerical Methods for PDE's, 11, 199-228 (1995). Zbl0828.65124MR1325394
  3. [3] M. CHEN, R. TEMAM, 1991, Incremental Unknowns for Solving Partial Differential Equations, Numerische Matematik, 59, 255-271. Zbl0712.65103MR1106383
  4. [4] M. CHEN, R. TEMAM, 1993, Incremental Unknowns in Finite Differences : Condition Number of the Matrix, SIAM J. of Matrix Analysis and Applications (SIMAX), 14, n° 2, 432-455. Zbl0773.65080MR1211799
  5. [5] G. H. GOLUB, G. A. MEURANT, 1983, Résolution numérique des grands systèmes linéaires, Ecole d'été d'Analyse Numérique CEA-EDF-INRIA, Eyrolles. Zbl0646.65022MR756627
  6. [6] D. HENRY, 1981, Geometric Theory of Semilinear Parabolic Equations, Springer Verlag, n° 840. Zbl0456.35001MR610244
  7. [7] H. MARDER, B. WEITZNER, 1970, A Bifurcation Problem in E-layer Equilibria, Plasma Physics, 12, 435-445. Zbl0195.29002
  8. [8] M. MARION, R. TEMAM, 1989, Nonlinear Galerkin Methods, SIAM Journal of Numerical Analysis, 26, 1139-1157. Zbl0683.65083MR1014878
  9. [9] M. MARION, R. TEMAM, 1990, Nonlinear Galerkin Methods ; The Finite elements case, Numerische Matematik, 57, 205-226. Zbl0702.65081MR1057121
  10. [10] M. SERMANGE, 1979, Une méthode numérique en bifurcation. Application à un problème à frontière libre de la physique des plasmas, Applied Mathematics and Optimization, 127-151. Zbl0393.65026MR533616
  11. [11] R. TEMAM, 1990, Inertial Manifolds and Multigrid Methods, SIAM J. Math. Anal, 21, 154-178. Zbl0715.35039MR1032732

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.