Incremental unknowns on nonuniform meshes
- Volume: 32, Issue: 5, page 539-577
- ISSN: 0764-583X
Access Full Article
topHow to cite
topChehab, J.-P., and Miranville, A.. "Incremental unknowns on nonuniform meshes." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.5 (1998): 539-577. <http://eudml.org/doc/193886>.
@article{Chehab1998,
author = {Chehab, J.-P., Miranville, A.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite difference method; incremental unknown; non-uniform mesh; elliptic equations; boundary layer problem; condition number; Poisson equation; computational fluid dynamics; Navier-Stokes equation; Dirichlet problem},
language = {eng},
number = {5},
pages = {539-577},
publisher = {Dunod},
title = {Incremental unknowns on nonuniform meshes},
url = {http://eudml.org/doc/193886},
volume = {32},
year = {1998},
}
TY - JOUR
AU - Chehab, J.-P.
AU - Miranville, A.
TI - Incremental unknowns on nonuniform meshes
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 5
SP - 539
EP - 577
LA - eng
KW - finite difference method; incremental unknown; non-uniform mesh; elliptic equations; boundary layer problem; condition number; Poisson equation; computational fluid dynamics; Navier-Stokes equation; Dirichlet problem
UR - http://eudml.org/doc/193886
ER -
References
top- [1] R. E. BANK, T. F. DUPONT, H. YSERENTANT, The Hierarchical Basis Multigrid Method, Numer. Math. 52, 1988, 4227-458. Zbl0645.65074MR932709
- [2] S. BIRINGEN and A. HUSER, Calculation of two-dimensional shear-driven cavity flows at high Reynolds numbers, Int J. for Num. Meth. in Fluids, vol. 14, 1087-1109 (1992). Zbl0753.76116
- [3] M. H. CARPENTER, D. GOTTLIEB and S. ABARBANEL, Time-Stable Boundary Conditions for Finite Difference Schemes Solving Hyperbolic Systems Methodology and Application to High-Order Compact Schemes, ICASE Preprint series. Zbl0832.65098MR1275021
- [4] B. COCKBURN and C. W. SHU, Nonlinearly Stable Compact Schemes for shock calculations, ICASE Preprint series, May 1992. Zbl0805.65085MR1275104
- [5] J. P. CHEHAB, Solution of Generalized Stokes Problems Using Hierarchical Methods and Incremental Unknowns, App. Num. Math. 21, 9-42, (1996). Zbl0853.76044MR1418694
- [6] J. P. CHEHAB, Incremental Unknowns Method and Compact Schemes, M2AN, 32, 1, 1998, 51-83. Zbl0914.65110MR1619593
- [7] J. P. CHEBAB and R. TEMAM, Incremental Unknowns for Solving Nonlinear Eigenvalue Problems New Multiresolution Methods, Numerical Methods for PDE's, 11, 199-228 (1995). Zbl0828.65124MR1325394
- [8] J. P. CHEBAB, A Nonlinear Adaptative Multiresolution Method in Finite Differences with Incremental Unknowns, Modélisation Mathématique et Analyse Numérique (M2AN), Vol. 29, 4, 451-475, 1995. Zbl0836.65114MR1346279
- [9] M. CHEN, A. MIRANVILLE and R. TEMAM, Incremental Unknows in Finite Differences in Space Dimension 3, Computational and Applied Mathematics, 14, 3 (1995), 1-15. MR1384185
- [10] M. CHEN and R. TEMAM, Incremental Unknows for Solving Partial Differential Equations, Numerische Matematik, Springer Verlag, 59, 1991, 255-271. Zbl0712.65103MR1106383
- [11] M. CHEN and R. TEMAM, Incremental Unknows in Finite Differences Condition Number of the Matrix, SIAM J. on Matrix Analysis and Applications (SIMAX), 14, n° 2, 1993, 432-455. Zbl0773.65080MR1211799
- [12] M. CHEN and R. TEMAM, Non Linear Galerkin Method in the Finite Difference case and Wavelet like Incremental Unknowns, Numer. Math. 64, 1993, 271-294. Zbl0798.65093MR1206665
- [13] A. DEBUSSCHE, T. DUBOIS and R. TEMAM, The Nonlinear Galerkin Method: A Multiscale Method Applied to the Simulation of Homogeneous Turbulent Flows, Theorical and Computational Fluid Dynamics, 7, 4, 1995, 279-315. Zbl0838.76060
- [14] T. DUBOIS and A. MIRANVILLE, Existence and uniqueness results for a velocity formulation of Navier Stokes equations in a Channel, Applicable Analysis, 55, 1994, 103-138. Zbl0833.35001MR1379647
- [15] J. KIM and P. MOIN, Numerical investigation of turbulent channel flow, J. Fluid Mech. (1982, vol. 118, 341-377. Zbl0491.76058
- [16] S. K. LELE, Compact Finite Difference Schemes with Spectral like Resolution, J. Comp. Phys., 103, 1992, 16-42. Zbl0759.65006MR1188088
- [17] M. MARION and R. TEMAM, Nonlinear Galerkin Methods, SIAM Journal of Numerical Analysis, 26, 1989, 1139-1157. Zbl0683.65083MR1014878
- [18] M. MARION and R. TEMAM, Nonlinear Galerkin Methods; The Finite elements case, Numerische Mathematik, 57, 1990, 205-226. Zbl0702.65081MR1057121
- [19] J. SHEN, Hopf bifurcation of the unsteady regularized driven cavity flows, J. Comput. Phys. Vol. 95, 228-245 (1991). Zbl0725.76059
- [20] R. TEMAM, Inertial Manifolds and Multigrid Methods, SIAM J. Math. Anal. 21, 1990, 154-178. Zbl0715.35039MR1032732
- [21] R. TEMAM, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Science, Springer Verlag, 1988, 68. Zbl0662.35001MR953967
- [22] H. A. VAN DER VORST, Bi-CGSTAB a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13, 1992, 631-644. Zbl0761.65023MR1149111
- [23] H. YSERENTANT, On Multilevel Splitting of Finite Element Spaces, Numer. Math. 49, 1986, 379-412. Zbl0608.65065MR853662
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.