Incremental unknowns on nonuniform meshes

J.-P. Chehab; A. Miranville

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1998)

  • Volume: 32, Issue: 5, page 539-577
  • ISSN: 0764-583X

How to cite

top

Chehab, J.-P., and Miranville, A.. "Incremental unknowns on nonuniform meshes." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.5 (1998): 539-577. <http://eudml.org/doc/193886>.

@article{Chehab1998,
author = {Chehab, J.-P., Miranville, A.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite difference method; incremental unknown; non-uniform mesh; elliptic equations; boundary layer problem; condition number; Poisson equation; computational fluid dynamics; Navier-Stokes equation; Dirichlet problem},
language = {eng},
number = {5},
pages = {539-577},
publisher = {Dunod},
title = {Incremental unknowns on nonuniform meshes},
url = {http://eudml.org/doc/193886},
volume = {32},
year = {1998},
}

TY - JOUR
AU - Chehab, J.-P.
AU - Miranville, A.
TI - Incremental unknowns on nonuniform meshes
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 5
SP - 539
EP - 577
LA - eng
KW - finite difference method; incremental unknown; non-uniform mesh; elliptic equations; boundary layer problem; condition number; Poisson equation; computational fluid dynamics; Navier-Stokes equation; Dirichlet problem
UR - http://eudml.org/doc/193886
ER -

References

top
  1. [1] R. E. BANK, T. F. DUPONT, H. YSERENTANT, The Hierarchical Basis Multigrid Method, Numer. Math. 52, 1988, 4227-458. Zbl0645.65074MR932709
  2. [2] S. BIRINGEN and A. HUSER, Calculation of two-dimensional shear-driven cavity flows at high Reynolds numbers, Int J. for Num. Meth. in Fluids, vol. 14, 1087-1109 (1992). Zbl0753.76116
  3. [3] M. H. CARPENTER, D. GOTTLIEB and S. ABARBANEL, Time-Stable Boundary Conditions for Finite Difference Schemes Solving Hyperbolic Systems Methodology and Application to High-Order Compact Schemes, ICASE Preprint series. Zbl0832.65098MR1275021
  4. [4] B. COCKBURN and C. W. SHU, Nonlinearly Stable Compact Schemes for shock calculations, ICASE Preprint series, May 1992. Zbl0805.65085MR1275104
  5. [5] J. P. CHEHAB, Solution of Generalized Stokes Problems Using Hierarchical Methods and Incremental Unknowns, App. Num. Math. 21, 9-42, (1996). Zbl0853.76044MR1418694
  6. [6] J. P. CHEHAB, Incremental Unknowns Method and Compact Schemes, M2AN, 32, 1, 1998, 51-83. Zbl0914.65110MR1619593
  7. [7] J. P. CHEBAB and R. TEMAM, Incremental Unknowns for Solving Nonlinear Eigenvalue Problems New Multiresolution Methods, Numerical Methods for PDE's, 11, 199-228 (1995). Zbl0828.65124MR1325394
  8. [8] J. P. CHEBAB, A Nonlinear Adaptative Multiresolution Method in Finite Differences with Incremental Unknowns, Modélisation Mathématique et Analyse Numérique (M2AN), Vol. 29, 4, 451-475, 1995. Zbl0836.65114MR1346279
  9. [9] M. CHEN, A. MIRANVILLE and R. TEMAM, Incremental Unknows in Finite Differences in Space Dimension 3, Computational and Applied Mathematics, 14, 3 (1995), 1-15. MR1384185
  10. [10] M. CHEN and R. TEMAM, Incremental Unknows for Solving Partial Differential Equations, Numerische Matematik, Springer Verlag, 59, 1991, 255-271. Zbl0712.65103MR1106383
  11. [11] M. CHEN and R. TEMAM, Incremental Unknows in Finite Differences Condition Number of the Matrix, SIAM J. on Matrix Analysis and Applications (SIMAX), 14, n° 2, 1993, 432-455. Zbl0773.65080MR1211799
  12. [12] M. CHEN and R. TEMAM, Non Linear Galerkin Method in the Finite Difference case and Wavelet like Incremental Unknowns, Numer. Math. 64, 1993, 271-294. Zbl0798.65093MR1206665
  13. [13] A. DEBUSSCHE, T. DUBOIS and R. TEMAM, The Nonlinear Galerkin Method: A Multiscale Method Applied to the Simulation of Homogeneous Turbulent Flows, Theorical and Computational Fluid Dynamics, 7, 4, 1995, 279-315. Zbl0838.76060
  14. [14] T. DUBOIS and A. MIRANVILLE, Existence and uniqueness results for a velocity formulation of Navier Stokes equations in a Channel, Applicable Analysis, 55, 1994, 103-138. Zbl0833.35001MR1379647
  15. [15] J. KIM and P. MOIN, Numerical investigation of turbulent channel flow, J. Fluid Mech. (1982, vol. 118, 341-377. Zbl0491.76058
  16. [16] S. K. LELE, Compact Finite Difference Schemes with Spectral like Resolution, J. Comp. Phys., 103, 1992, 16-42. Zbl0759.65006MR1188088
  17. [17] M. MARION and R. TEMAM, Nonlinear Galerkin Methods, SIAM Journal of Numerical Analysis, 26, 1989, 1139-1157. Zbl0683.65083MR1014878
  18. [18] M. MARION and R. TEMAM, Nonlinear Galerkin Methods; The Finite elements case, Numerische Mathematik, 57, 1990, 205-226. Zbl0702.65081MR1057121
  19. [19] J. SHEN, Hopf bifurcation of the unsteady regularized driven cavity flows, J. Comput. Phys. Vol. 95, 228-245 (1991). Zbl0725.76059
  20. [20] R. TEMAM, Inertial Manifolds and Multigrid Methods, SIAM J. Math. Anal. 21, 1990, 154-178. Zbl0715.35039MR1032732
  21. [21] R. TEMAM, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Science, Springer Verlag, 1988, 68. Zbl0662.35001MR953967
  22. [22] H. A. VAN DER VORST, Bi-CGSTAB a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13, 1992, 631-644. Zbl0761.65023MR1149111
  23. [23] H. YSERENTANT, On Multilevel Splitting of Finite Element Spaces, Numer. Math. 49, 1986, 379-412. Zbl0608.65065MR853662

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.