Backward Euler type methods for parabolic integro-differential equations in Banach space

N. Yu. Bakaev; S. Larsson; V. Thomée

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1998)

  • Volume: 32, Issue: 1, page 85-99
  • ISSN: 0764-583X

How to cite

top

Bakaev, N. Yu., Larsson, S., and Thomée, V.. "Backward Euler type methods for parabolic integro-differential equations in Banach space." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.1 (1998): 85-99. <http://eudml.org/doc/193868>.

@article{Bakaev1998,
author = {Bakaev, N. Yu., Larsson, S., Thomée, V.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {parabolic integro-differential equations; quadrature method; time discretization; Banach space; error estimates; stability; initial value problem; backward Euler type methods; parabolic equation with memory; finite element},
language = {eng},
number = {1},
pages = {85-99},
publisher = {Dunod},
title = {Backward Euler type methods for parabolic integro-differential equations in Banach space},
url = {http://eudml.org/doc/193868},
volume = {32},
year = {1998},
}

TY - JOUR
AU - Bakaev, N. Yu.
AU - Larsson, S.
AU - Thomée, V.
TI - Backward Euler type methods for parabolic integro-differential equations in Banach space
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 1
SP - 85
EP - 99
LA - eng
KW - parabolic integro-differential equations; quadrature method; time discretization; Banach space; error estimates; stability; initial value problem; backward Euler type methods; parabolic equation with memory; finite element
UR - http://eudml.org/doc/193868
ER -

References

top
  1. [1] M. CROUZEIX, S. LARSSON and V. THOMÉE, Resolvent estimates for elliptic finite element operators in one dimension, Math. Comp. 63 (1994), 121-140. Zbl0806.65096MR1242058
  2. [2] A. PAZY, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, Berlin and New York, 1983. Zbl0516.47023MR710486
  3. [3] A. H. SCHATZ, V. THOMÉE and L. B. WAHLBIN, Maximum norm stability and error estimates in parabolic finite element equations, Comm. Pure Appl. Math. 33 (1980), 265-304. Zbl0414.65066MR562737
  4. [4] I. H. SLOAN and V. THOMÉE, Time discretization of an integro-differential equation of parabolic type, SIAM J. Numer. Anal. 23 (1986), 1052-1061. Zbl0608.65096MR859017
  5. [5] V. THOMÉE and N.-Y. ZHANG, Error estimates for semidiscrete finite element methods for parabolic integro-differential equations, Math. Comp. 53 (1989). 121-139. Zbl0673.65099MR969493
  6. [6] N.-Y. ZHANG, On fully discrete Galerkin approximations for partial integro-differential equations of parabolic type, Math. Comp. 60 (1993), 133-166. Zbl0795.65098MR1149295

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.