Wellposedness of kinematic hardening models in elastoplasticity

Martin Brokate; Pavel Krejčí

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1998)

  • Volume: 32, Issue: 2, page 177-209
  • ISSN: 0764-583X

How to cite

top

Brokate, Martin, and Krejčí, Pavel. "Wellposedness of kinematic hardening models in elastoplasticity." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.2 (1998): 177-209. <http://eudml.org/doc/193871>.

@article{Brokate1998,
author = {Brokate, Martin, Krejčí, Pavel},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {nonliner hardening; rate-independent elastoplastic constitutive laws; existence; uniqueness; continuous dependence; stress-strain evolution; Lipschitz continuity},
language = {eng},
number = {2},
pages = {177-209},
publisher = {Dunod},
title = {Wellposedness of kinematic hardening models in elastoplasticity},
url = {http://eudml.org/doc/193871},
volume = {32},
year = {1998},
}

TY - JOUR
AU - Brokate, Martin
AU - Krejčí, Pavel
TI - Wellposedness of kinematic hardening models in elastoplasticity
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 2
SP - 177
EP - 209
LA - eng
KW - nonliner hardening; rate-independent elastoplastic constitutive laws; existence; uniqueness; continuous dependence; stress-strain evolution; Lipschitz continuity
UR - http://eudml.org/doc/193871
ER -

References

top
  1. [1] P. J. ARMSTRONG and C. O. FREDERICK, 1966, A mathematical representation of the multiaxial Bauschinger effect, C.E.G.B., Report RD/B/N 731. 
  2. [2] A. F. BOWER, 1989, Cyclic hardening properties of hard-drawn copper and rail steel, J. Mech. Phys. Solids, 37, pp. 455-470. 
  3. [3] H. BRÉZIS, 1972, Problèmes unilatéraux, J. Math. Pures et Appl., 51, pp. 1-168. Zbl0237.35001MR428137
  4. [4] M. BROKATE, K. DRESSLER, and P. KREJČÍ, 1996, On the Mróz model, Eur. J. Appl. Math., 7, pp. 473-497. Zbl0857.73028MR1419644
  5. [5] M. BROKATE, K. DRESSLER and P. KREJČÍ, 1996, Rainflow counting and energy dissipation for hysteresis models in elastoplasticity, Eur. J. Mech. A/Solds, 15, pp. 705-737. Zbl0863.73022MR1412202
  6. [6] M. BROKATE and J. SPREKELS, 1996, Hysteresis and phase transitions, Springer, New York. Zbl0951.74002MR1411908
  7. [7] J.-L. CHABOCHE, 1989, Constitutive equations for cyclic plasticity and cyclic viscoplasticity, Int. J. Plasticity, 5, pp. 247-302. Zbl0695.73001
  8. [8] J.-L. CHABOCHE, 1991, On some modifications of kinematic hardening to improve the description of ratchetting effects, Int. J. Plasticity, 7, pp. 661-678. 
  9. [9] J.-.L. CHABOCHE, 1994, Modeling of ratchetting: evaluation of various approaches, Eur. J. Mech., A/Solids, 13, pp. 501-518. 
  10. [10] C. C. CHU, 1984, A three dimensional model of anisotropic hardening in metals and its application to the analysis of sheet metal formability, J. Mech. Phys. Solids, 32, pp. 197-212. 
  11. [11] C. C. CHU, 1987, The analysis of multiaxial cyclic problems with an anisotropic hardening model, Int. J. Solids Structures, 23, pp. 567-579. 
  12. [12] G. DUVAUT and J. L. LIONS, 1976, Inequalities in mechanics and physics, Springer-Verlag, Berlin. French edition Dunod, Paris 1972. Zbl0331.35002MR521262
  13. [13] K. GRÖGER, 1979, Initial value problems for elastoplastic and elasto-viscoplastic systems, in : Nonlinear Analysis, Function Spaces and Applications, eds. S. Fuclc and A Kufner, Teubner, Leipzig, pp. 95-127. Zbl0442.73037MR578911
  14. [14] B. HALPHEN and Q. S. NGUYEN, 1975, Sur les matériaux standard généralises, J. de Mécanique, 14, pp. 39-63. Zbl0308.73017MR416177
  15. [15] B. HALPHEN, 1976, L'accomodation des structures élastoplastiques à écrouissage cinématique, C. R. Acad. Sc. Paris, 283, pp. 799-802. Zbl0357.73035MR436712
  16. [16] Y. JIANG and H. SEHITOGLU, 1994, Cyclic ratchetting of 1070 steel under multiaxial stress states, Int. J. Plasticity, 10, pp. 579-608. MR1336972
  17. [17] Y. JIANG and H. SEHITOGLU, 1994, Multiaxial cyclic ratchetting under multiple step loading, Int. J. Plasticity, 10, pp. 849-870. 
  18. [18] Y. JIANG and H. SEHITOGLU, 1996, Comments on the Mroz multiple surface type plasticity models, Int. J. Solids Structures, to appear. Zbl0900.73153
  19. [19] C. JOHNSON, 1978, On plasticity with hardening, J. Math. Anal. Appl. 62, pp. 325-336. Zbl0373.73049MR489198
  20. [20] M. KAMLAH, M. KORZEŃ and CH. TSAKMAKIS, 1997, Uniaxial ratchetting in rate-independent plasticity laws, Acta Mechanica, 120, pp. 173-198. Zbl0907.73027MR1436472
  21. [21] M. A. KRASNOSEL'SKII and A. V. POKROVSKII, 1989, Systems with hysteresis, Springer Verlag, Berlin Russian edition: Nauka, Moscow, 1983. MR742931
  22. [22] P. KREJČÍ, 1991, Vector hysteresis models, Euro. Jnl of Applied Mathematics, 2, pp. 281-292. Zbl0754.73015MR1123144
  23. [23] P. KREJČÍ, 1996, Hysteresis, convexity and dissipation in hyperbolic equations, Gakkotosho, Tokyo. Zbl1187.35003MR2466538
  24. [24] J. LEMAITRE and J.-L. CHABOCHE, 1990, Mechanics of solid materials, Cambridge University Press, Cambridge 1990. French édition Dunod, Paris, 1985. Zbl0743.73002
  25. [25] J.-L. LIONS, 1969, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris. Zbl0189.40603MR259693
  26. [26] G. A. MAUGIN, 1992, The thermomechanics of plasticity and fracture, Cambridge University Press, Cambridge, 1992. Zbl0753.73001MR1173212
  27. [27] E. MELAN, 1938, Zur Plastizität des räumlichen Kontinuums, Ingenieur-Archiv, 9, 116-126. Zbl64.0840.01JFM64.0840.01
  28. [28] J. C. MOOSBRUGGER and D. L. McDOWELL, 1989, On a class of kinematic hardening rules for nonproportional cyclic plasticity, J. Eng. Mat. Techn., 111, pp. 87-98. 
  29. [29] Z. MRÓZ, 1967, On the description of anisotropic workhardening, J. Mech. Phys. Solids, 15, pp. 163-175. 
  30. [30] J. NEČS and I. HLAVÁČEK, 1981, Mathematical theory of elastic and elastoplastic bodies : An introduction, Elsevier, Amsterdam. Zbl0448.73009
  31. [31] Q. S. NGUYEN, 1977, On the elastic plastic initial-boundary value problem and its numerical integration, Int. J. Numer. Int. J. Numer. Meth. Engng., 11, pp. 817, 832. Zbl0366.73034MR446041
  32. [32] P. D. PANAGIOTOPOULOS, Inequality problems in mechanics and applications, Burkhauser, Basel. Zbl0579.73014
  33. [33] W. PRAGER, 1949, Recent developments in the mathematical theory of plasticity, J. Appl. Phys., 20, pp. 235-241. Zbl0034.26605MR28760
  34. [34] L. PRANDTL, 1928, Ein Gedankenmodell zur kinetischen Theorie der festen Körper, ZAMM, 8, pp. 85-106. JFM54.0847.04
  35. [35] R. TEMAM, 1985, Mathematical problems in plasticity, Gauthier-Villars, Paris. MR711964
  36. [36] CH. TSAKMAKIS, 1987, Über inkrementelle Materialgleichungen zur Beschreibung groβer inelastischer Deformationen, Fortschritt-Berichte VDI Reihe 18, Nr. 36, VDI-Verlag, Düsseldorf. 
  37. [37] A. VISINTIN, 1987, Rheological models and hysteresis effects, Rend. Sem. Matem. Univ. Padova, 77, pp. 213-243. Zbl0633.73001MR904623
  38. 38] A. VISINTIN, 1994, Differential models of hysteresis, Springer-Verlag, Berlin. Zbl0820.35004MR1329094

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.