Stress-controlled hysteresis and long-time dynamics of implicit differential equations arising in hypoplasticity

Victor A. Kovtunenko; Ján Eliaš; Pavel Krejčí; Giselle A. Monteiro; Judita Runcziková

Archivum Mathematicum (2023)

  • Volume: 059, Issue: 3, page 275-286
  • ISSN: 0044-8753

Abstract

top
A long-time dynamic for granular materials arising in the hypoplastic theory of Kolymbas type is investigated. It is assumed that the granular hardness allows exponential degradation, which leads to the densification of material states. The governing system for a rate-independent strain under stress control is described by implicit differential equations. Its analytical solution for arbitrary inhomogeneous coefficients is constructed in closed form. Under cyclic loading by periodic pressure, finite ratcheting for the void ratio is derived in explicit form, which converges to a limiting periodic process (attractor) when the number of cycles tends to infinity.

How to cite

top

Kovtunenko, Victor A., et al. "Stress-controlled hysteresis and long-time dynamics of implicit differential equations arising in hypoplasticity." Archivum Mathematicum 059.3 (2023): 275-286. <http://eudml.org/doc/298994>.

@article{Kovtunenko2023,
abstract = {A long-time dynamic for granular materials arising in the hypoplastic theory of Kolymbas type is investigated. It is assumed that the granular hardness allows exponential degradation, which leads to the densification of material states. The governing system for a rate-independent strain under stress control is described by implicit differential equations. Its analytical solution for arbitrary inhomogeneous coefficients is constructed in closed form. Under cyclic loading by periodic pressure, finite ratcheting for the void ratio is derived in explicit form, which converges to a limiting periodic process (attractor) when the number of cycles tends to infinity.},
author = {Kovtunenko, Victor A., Eliaš, Ján, Krejčí, Pavel, Monteiro, Giselle A., Runcziková, Judita},
journal = {Archivum Mathematicum},
keywords = {hypoplasticity; rate-independent dynamic system; cyclic behavior; hysteresis; ratcheting; attractor; implicit ODE; closed-form solution; numerical simulation},
language = {eng},
number = {3},
pages = {275-286},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Stress-controlled hysteresis and long-time dynamics of implicit differential equations arising in hypoplasticity},
url = {http://eudml.org/doc/298994},
volume = {059},
year = {2023},
}

TY - JOUR
AU - Kovtunenko, Victor A.
AU - Eliaš, Ján
AU - Krejčí, Pavel
AU - Monteiro, Giselle A.
AU - Runcziková, Judita
TI - Stress-controlled hysteresis and long-time dynamics of implicit differential equations arising in hypoplasticity
JO - Archivum Mathematicum
PY - 2023
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 059
IS - 3
SP - 275
EP - 286
AB - A long-time dynamic for granular materials arising in the hypoplastic theory of Kolymbas type is investigated. It is assumed that the granular hardness allows exponential degradation, which leads to the densification of material states. The governing system for a rate-independent strain under stress control is described by implicit differential equations. Its analytical solution for arbitrary inhomogeneous coefficients is constructed in closed form. Under cyclic loading by periodic pressure, finite ratcheting for the void ratio is derived in explicit form, which converges to a limiting periodic process (attractor) when the number of cycles tends to infinity.
LA - eng
KW - hypoplasticity; rate-independent dynamic system; cyclic behavior; hysteresis; ratcheting; attractor; implicit ODE; closed-form solution; numerical simulation
UR - http://eudml.org/doc/298994
ER -

References

top
  1. Annin, B.D., Kovtunenko, V.A., Sadovskii, V.M., Variational and hemivariational inequalities in mechanics of elastoplastic, granular media, and quasibrittle cracks, Analysis, Modelling, Optimization, and Numerical Techniques (Tost, G.O., Vasilieva, O., eds.), vol. 121, Springer Proc. Math. Stat., 2015, pp. 49–56. (2015) MR3354167
  2. Armstrong, P.J., Frederick, C.O., A mathematical representation of the multiaxial Bauschinger effect, C.E.G.B. Report RD/B/N, 1966. (1966) 
  3. Bauer, E., 10.3208/sandf.36.13, Soils Found. 36 (1996), 13–26. (1996) DOI10.3208/sandf.36.13
  4. Bauer, E., 10.1016/S0167-6636(99)00017-4, Mech. Mater. 31 (1999), 597–609. (1999) DOI10.1016/S0167-6636(99)00017-4
  5. Bauer, E., Long-term behavior of coarse-grained rockfill material and their constitutive modeling, Dam Engineering - Recent Advances in Design and Analysis (Fu, Z., Bauer, E., eds.), IntechOpen, 2021. (2021) 
  6. Bauer, E., Kovtunenko, V.A., Krejčí, P., Krenn, N., Siváková, L., Zubkova, A.V., Modified model for proportional loading and unloading of hypoplastic materials, Extended Abstracts Spring 2018. Singularly Perturbed Systems, Multiscale Phenomena and Hysteresis: Theory and Applications (Korobeinikov, A., Caubergh, M., Lázaro, T., Sardanyés, J., eds.), Trends in Mathematics, vol. 11, Birkhäuser, Hamburk, 2019, pp. 201–210. (2019) MR4094363
  7. Bauer, E., Kovtunenko, V.A., Krejčí, P., Krenn, N., Siváková, L., Zubkova, A.V., 10.1007/s00707-019-02597-3, Acta Mechanica 231 (2020), 1603–1619. (2020) MR4078331DOI10.1007/s00707-019-02597-3
  8. Brokate, M., Krejčí, P., 10.1051/m2an/1998320201771, RAIRO Modél. Math. Anal. Numér. 32 (1998), 177–209. (1998) DOI10.1051/m2an/1998320201771
  9. Chambon, R., Desrues, J., Hammad, W., Charlier, R., 10.1002/nag.1610180404, Int. J. Num. Anal. Methods Geomech. 18 (1994), 253–278. (1994) DOI10.1002/nag.1610180404
  10. Darve, F., Incrementally non-linear constitutive relationships, Geomaterials, Constitutive Equations and Modelling (Darve, F., ed.), Elsevier, Horton, Greece, 1990, pp. 213–238. (1990) 
  11. Fellner, K., Kovtunenko, V.A., 10.1002/mma.3593, Math. Methods Appl. Sci. 38 (2015), 3575–3586. (2015) MR3423716DOI10.1002/mma.3593
  12. Fellner, K., Kovtunenko, V.A., 10.1080/00036811.2015.1105962, Appl. Anal. 95 (2016), 2661–2682. (2016) MR3552311DOI10.1080/00036811.2015.1105962
  13. González Granada, J.R., Kovtunenko, V.A., 10.1007/s13324-018-0257-1, Anal. Math. Phys. 8 (2018), 603–619. (2018) MR3881016DOI10.1007/s13324-018-0257-1
  14. Gudehus, G., 10.3208/sandf.36.1, Soils Found. 36 (1996), 1–12. (1996) DOI10.3208/sandf.36.1
  15. Hron, J., Málek, J., Rajagopal, K.R., Simple flows of fluids with pressure dependent viscosities, Proc. Roy. Soc. A 457 (2001), 1603–1622. (2001) 
  16. Khludnev, A.M., Kovtunenko, V.A., Analysis of Cracks in Solids, WIT-Press, Southampton, Boston, 2000. (2000) 
  17. Kolymbas, D., Introduction to Hypoplasticity, A.A. Balkema, Rotterdam, 2000. (2000) 
  18. Kolymbas, D., Medicus, G., Genealogy of hypoplasticity and barodesy, Int. J. Numer. Anal. Methods Geomech. 40 (2016), 2530–2550. (2016) 
  19. Kovtunenko, V.A., Bauer, E., Eliaš, J., Krejčí, P., Monteiro, G.A., Straková (Siváková), L., 10.17516/1997-1397-2021-14-6-756-767, J. Sib. Fed. Univ. - Math. Phys. 14 (2021), 756–767. (2021) DOI10.17516/1997-1397-2021-14-6-756-767
  20. Kovtunenko, V.A., Krejčí, P., Bauer, E., Siváková, L., Zubkova, A.V., On Lyapunov stability in hypoplasticity, Proc. Equadiff 2017 Conference (Mikula, K., Ševčovič, D., Urbán, J., eds.), Slovak University of Technology, Bratislava, 2017, pp. 107–116. (2017) MR3624096
  21. Kovtunenko, V.A., Krejčí, P., Krenn, N., Bauer, E., Siváková, L., Zubkova, A.V., 10.21595/mme.2019.21220, Math. Models Eng. 5 (2019), 119–126. (2019) MR4203411DOI10.21595/mme.2019.21220
  22. Kovtunenko, V.A., Zubkova, A.V., 10.3934/krm.2018007, Kinet. Relat. Models 11 (2018), 119–135. (2018) MR3708185DOI10.3934/krm.2018007
  23. Kovtunenko, V.A., Zubkova, A.V., 10.1080/00036811.2019.1600676, Appl. Anal. 100 (2021 a), 253–274. (2021) MR4203411DOI10.1080/00036811.2019.1600676
  24. Kovtunenko, V.A., Zubkova, A.V., 10.1017/S095679252000025X, Eur. J. Appl. Math. 32 (2021 b), 683–710. (2021) MR4283034DOI10.1017/S095679252000025X
  25. Krejčí, P., Hysteresis, Convexity and Dissipation in Hyperbolic Equations, Gakkotosho, Tokyo, 1996. (1996) 
  26. Mašín, D., Modelling of Soil Behaviour with Hypoplasticity: Another Approach to Soil Constitutive Modelling, Springer Nature, Switzerland, 2019. (2019) 
  27. Niemunis, A., Herle, I., 10.1002/(SICI)1099-1484(199710)2:4<279::AID-CFM29>3.0.CO;2-8, Mech. Cohes.-Frict. Mat. 2 (1997), 279–299. (1997) DOI10.1002/(SICI)1099-1484(199710)2:4<279::AID-CFM29>3.0.CO;2-8
  28. Rajagopal, K.R., Srinivasa, A.R., On a class of non-dissipative materials that are not hyperelastic, Proc. Roy. Soc. A 465 (2009), 493–500. (2009) MR2471770
  29. Truesdell, C., 10.6028/jres.067B.011, J. Res. Natl. Bur. Stand. B 67B (1963), 141–143. (1963) DOI10.6028/jres.067B.011
  30. Valanis, K.C., A theory of viscoplasticity without a yield surface, Arch. Mech. 23 (1971), 517–533. (1971) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.