Nouveaux algorithmes performants en théorie du transport
- Volume: 32, Issue: 3, page 341-358
- ISSN: 0764-583X
Access Full Article
topHow to cite
topAkesbi, Samir, and Nicolet, Martial. "Nouveaux algorithmes performants en théorie du transport." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.3 (1998): 341-358. <http://eudml.org/doc/193877>.
@article{Akesbi1998,
author = {Akesbi, Samir, Nicolet, Martial},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {transport equation; successive overrelaxation; algorithms},
language = {fre},
number = {3},
pages = {341-358},
publisher = {Dunod},
title = {Nouveaux algorithmes performants en théorie du transport},
url = {http://eudml.org/doc/193877},
volume = {32},
year = {1998},
}
TY - JOUR
AU - Akesbi, Samir
AU - Nicolet, Martial
TI - Nouveaux algorithmes performants en théorie du transport
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 3
SP - 341
EP - 358
LA - fre
KW - transport equation; successive overrelaxation; algorithms
UR - http://eudml.org/doc/193877
ER -
References
top- [1] S. AKESBI, M. R. LAYDI, M. MOKHTAR-KHARROUBI, Décomposition d'opérateurs et accélération de la convergence en neutronique, C.R. Acad. Sci. Paris, t. 319, Série I, p. 765-770, 1994. Zbl0806.65143MR1300085
- [2] S. AKESBI, M. R. LAYDI, M. MOKHTAR KHARROUBI, Schemes and acceleration in transport theory, Journal of Transport Theory and Stat. Phys. (à paraître). Zbl0806.65143
- [3] S. AKESBI, M. NICOLET, Accélération de la convergence par relaxation en théorie du transport, C.R. Acad. Sci. Paris, t. 321, Série I, p. 637-640, 1995. Zbl0836.65150MR1356568
- [4] S. AKESBI, M. NICOLET, Décomposition d'opérateurs pour l'équation de transport stationnaire en géométrie bidimensionnelle. Proc. 26e Congrès National d'Analyse Numérique, p. 189-190, 1994.
- [5] ALCOUFFE-CLARK-LARSEN, The Diffusion Synthetic acceleration in multiple Time Scales. J. Brackbill, editor Ac. Press (1985).
- [6] P. G. CIARLET, Introduction à l'analyse numérique matricielle et à l'optimisation, Masson, 1982. Zbl0488.65001MR680778
- [7] R. KRESS, Linear integral equations, Springer Verlag, 1989. Zbl0671.45001MR1007594
- [8] E. W. LARSEN, Unconditionally stable diffusion-synthetic acceleration methods for the slab geometry discrete-ordinates equations, Part I, Part II. Nucl. Sc. and Eng. 1988.
- [9] P. LASCAUX, R. THEODOR, Analyse numérique matricielle appliquée à l'art de l'ingénieur, tome 2, Masson, 1987. Zbl0601.65017MR883208
- [10] I. MAREK, Frobenius theory of positive operators, Comparison theorems and applications. Siam. Jour. Appl. Math., vol. 19, n° 3, November 1970. Zbl0219.47022MR415405
- [11] M. MOKHTAR-KHARROUBI, On the approximation of a class of transport equations, Transport Theory and Statistical Physics, 22 (4), p. 561-570, 1993. Zbl0788.65139MR1218862
- [12] P. NELSON, A Survey Convergence Results in Numerical Transport Theory. Com. Procedings in honor of G. M. Wing's 65th birthday Transport Theory, Invariant Imbedding, and Integral Edited by P. Nelson and al., 1989.
- [13] R. SANCHEZ and N. J. McCORMICK, A review of Neutron Transport Approximations. Nucl. Sci. and Eng. 80, p. 481-535, 1982.
- [14] R. S. VARGA, Matrix Iterative Analysis, Prentince-Hall, Englewood Cliffs N.J. 1962. Zbl0133.08602MR158502
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.