Expanded mixed finite element methods for quasilinear second order elliptic problems, II

Zhangxin Chen

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1998)

  • Volume: 32, Issue: 4, page 501-520
  • ISSN: 0764-583X

How to cite

top

Chen, Zhangxin. "Expanded mixed finite element methods for quasilinear second order elliptic problems, II." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.4 (1998): 501-520. <http://eudml.org/doc/193884>.

@article{Chen1998,
author = {Chen, Zhangxin},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {expanded mixed finite element method; error estimate; superconvergence; quasilinear second-order elliptic problem; postprocessing},
language = {eng},
number = {4},
pages = {501-520},
publisher = {Dunod},
title = {Expanded mixed finite element methods for quasilinear second order elliptic problems, II},
url = {http://eudml.org/doc/193884},
volume = {32},
year = {1998},
}

TY - JOUR
AU - Chen, Zhangxin
TI - Expanded mixed finite element methods for quasilinear second order elliptic problems, II
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 4
SP - 501
EP - 520
LA - eng
KW - expanded mixed finite element method; error estimate; superconvergence; quasilinear second-order elliptic problem; postprocessing
UR - http://eudml.org/doc/193884
ER -

References

top
  1. [1] D. ADAMS, Sobolev Spaces, Academic Press, New York, 1975. Zbl0314.46030MR450957
  2. [2] F. BREZZI, J. Jr. DOUGLAS, R. DURÁN and M. FORTIN, Mixed finite éléments for second order ellipticproblems in three variables, Numer. Math. 51 (1987), 237-250. Zbl0631.65107MR890035
  3. [3] F. BREZZI, J. Jr. DOUGLAS, M. FORTIN and L. MARINI, Efficient rectangular mixed finite elements in two and three space variables, RAIRO Modèl. Math. Anal. Numér. 21 (1987), 581-604. Zbl0689.65065MR921828
  4. [4] F. BREZZI, J. Jr. DOUGLAS, M. FORTIN and L. MARIANI, Two families of mixed finite elements for second order elliptic problems, Numer. Math. 47 (1985), 217-235. Zbl0599.65072MR799685
  5. [5] Z. CHEN, Expanded mixed finite element methods for linear second order elliptic problems I, IMA Preprint Series # 1219, 1994, RAIRO Modèl. Math. Anal. Numér., in press. Zbl0910.65079MR1636376
  6. [6] Z. CHEN, On the existence, uniqueness and convergence of nonlinear mixed finite element methods, Mat. Aplic. Comput.8 (1989), 241-258. Zbl0709.65080MR1067288
  7. [7] Z. CHEN, BDM mixed methods for a nonlinear elliptic problem, J. Comp. Appl. Math. 53 (1994), 207-223. Zbl0819.65129MR1306126
  8. [8] Z. CHEN and J. Jr. DOUGLAS, Prismatic mixed finite elements for second order elliptic problems, Calcolo 26 (1989),135-148. Zbl0711.65089MR1083050
  9. [9] J. Jr. DOUGLAS, and T. DUPONT, A Galerkin method for a nonlinear Dirichlet problem, Math. Comp. 29 (1975), 689-696. Zbl0306.65072MR431747
  10. [10] J. Jr. DOUGLAS, and J. ROBERTS, Global estimates for mixed methods for second order elliptic problems, Math. Comp. 45 (1985), 39-52. Zbl0624.65109MR771029
  11. [11] J. Jr. DOUGLAS and J. WANG, A new family of mixed finite element spaces over rectangles, Mat. Aplic. Comput. 12 1993, 183-197. Zbl0806.65109MR1288240
  12. [12] D. GILBARG and N. TRUDINGER, Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, vol. 224, Springer-Verlag, Berlin, 1977. Zbl0361.35003MR473443
  13. [13] J. LIONS and E. MAGENES, Non-Homogeneous Boundary Value Problems and Apllications, Vol. I, Slinger-Verlag, Berlin, 1970. Zbl0223.35039
  14. [14] F. MILNER, Mixed finite element methods for quasilinear second order elliptic problems, Math. Comp. 44 (1982), 303-320. Zbl0567.65079MR777266
  15. [15] J. C. NEDELEC, Mixed finite elements in R3, Numer. Math. 35 (1980), 315-341. Zbl0419.65069MR592160
  16. [16] J. C. NEDELEC, A new family of mixed finite elements in R3, Numer. Math. 50 (1986), 57-81. Zbl0625.65107MR864305
  17. [17] P. A. RAVIART and J. M. THOMAS, A mixed finite element method for second order elliptic problems, Lecture Notes in Math. 606, Springer, Berlin, 1977, pp. 292-315. Zbl0362.65089MR483555
  18. [18] R. STENBERG, Postprocessing schemes for some mixed finite elements, RAIRO Modèl. Math. Anal. Numér. 25 (1991), 151-167. Zbl0717.65081MR1086845

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.