Expanded mixed finite element methods for quasilinear second order elliptic problems, II
- Volume: 32, Issue: 4, page 501-520
- ISSN: 0764-583X
Access Full Article
topHow to cite
topChen, Zhangxin. "Expanded mixed finite element methods for quasilinear second order elliptic problems, II." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.4 (1998): 501-520. <http://eudml.org/doc/193884>.
@article{Chen1998,
author = {Chen, Zhangxin},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {expanded mixed finite element method; error estimate; superconvergence; quasilinear second-order elliptic problem; postprocessing},
language = {eng},
number = {4},
pages = {501-520},
publisher = {Dunod},
title = {Expanded mixed finite element methods for quasilinear second order elliptic problems, II},
url = {http://eudml.org/doc/193884},
volume = {32},
year = {1998},
}
TY - JOUR
AU - Chen, Zhangxin
TI - Expanded mixed finite element methods for quasilinear second order elliptic problems, II
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 4
SP - 501
EP - 520
LA - eng
KW - expanded mixed finite element method; error estimate; superconvergence; quasilinear second-order elliptic problem; postprocessing
UR - http://eudml.org/doc/193884
ER -
References
top- [1] D. ADAMS, Sobolev Spaces, Academic Press, New York, 1975. Zbl0314.46030MR450957
- [2] F. BREZZI, J. Jr. DOUGLAS, R. DURÁN and M. FORTIN, Mixed finite éléments for second order ellipticproblems in three variables, Numer. Math. 51 (1987), 237-250. Zbl0631.65107MR890035
- [3] F. BREZZI, J. Jr. DOUGLAS, M. FORTIN and L. MARINI, Efficient rectangular mixed finite elements in two and three space variables, RAIRO Modèl. Math. Anal. Numér. 21 (1987), 581-604. Zbl0689.65065MR921828
- [4] F. BREZZI, J. Jr. DOUGLAS, M. FORTIN and L. MARIANI, Two families of mixed finite elements for second order elliptic problems, Numer. Math. 47 (1985), 217-235. Zbl0599.65072MR799685
- [5] Z. CHEN, Expanded mixed finite element methods for linear second order elliptic problems I, IMA Preprint Series # 1219, 1994, RAIRO Modèl. Math. Anal. Numér., in press. Zbl0910.65079MR1636376
- [6] Z. CHEN, On the existence, uniqueness and convergence of nonlinear mixed finite element methods, Mat. Aplic. Comput.8 (1989), 241-258. Zbl0709.65080MR1067288
- [7] Z. CHEN, BDM mixed methods for a nonlinear elliptic problem, J. Comp. Appl. Math. 53 (1994), 207-223. Zbl0819.65129MR1306126
- [8] Z. CHEN and J. Jr. DOUGLAS, Prismatic mixed finite elements for second order elliptic problems, Calcolo 26 (1989),135-148. Zbl0711.65089MR1083050
- [9] J. Jr. DOUGLAS, and T. DUPONT, A Galerkin method for a nonlinear Dirichlet problem, Math. Comp. 29 (1975), 689-696. Zbl0306.65072MR431747
- [10] J. Jr. DOUGLAS, and J. ROBERTS, Global estimates for mixed methods for second order elliptic problems, Math. Comp. 45 (1985), 39-52. Zbl0624.65109MR771029
- [11] J. Jr. DOUGLAS and J. WANG, A new family of mixed finite element spaces over rectangles, Mat. Aplic. Comput. 12 1993, 183-197. Zbl0806.65109MR1288240
- [12] D. GILBARG and N. TRUDINGER, Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, vol. 224, Springer-Verlag, Berlin, 1977. Zbl0361.35003MR473443
- [13] J. LIONS and E. MAGENES, Non-Homogeneous Boundary Value Problems and Apllications, Vol. I, Slinger-Verlag, Berlin, 1970. Zbl0223.35039
- [14] F. MILNER, Mixed finite element methods for quasilinear second order elliptic problems, Math. Comp. 44 (1982), 303-320. Zbl0567.65079MR777266
- [15] J. C. NEDELEC, Mixed finite elements in R3, Numer. Math. 35 (1980), 315-341. Zbl0419.65069MR592160
- [16] J. C. NEDELEC, A new family of mixed finite elements in R3, Numer. Math. 50 (1986), 57-81. Zbl0625.65107MR864305
- [17] P. A. RAVIART and J. M. THOMAS, A mixed finite element method for second order elliptic problems, Lecture Notes in Math. 606, Springer, Berlin, 1977, pp. 292-315. Zbl0362.65089MR483555
- [18] R. STENBERG, Postprocessing schemes for some mixed finite elements, RAIRO Modèl. Math. Anal. Numér. 25 (1991), 151-167. Zbl0717.65081MR1086845
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.