Étude numérique des oscillations des systèmes semi-linéaires
- Volume: 32, Issue: 7, page 789-815
- ISSN: 0764-583X
Access Full Article
topHow to cite
topGibel, P.. "Étude numérique des oscillations des systèmes semi-linéaires $3 x 3$." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.7 (1998): 789-815. <http://eudml.org/doc/193899>.
@article{Gibel1998,
author = {Gibel, P.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {particle method; semi-linear hyperbolic systems; oscillatory solutions; geometrical optics; convergence; method of characteristics},
language = {fre},
number = {7},
pages = {789-815},
publisher = {Dunod},
title = {Étude numérique des oscillations des systèmes semi-linéaires $3 x 3$},
url = {http://eudml.org/doc/193899},
volume = {32},
year = {1998},
}
TY - JOUR
AU - Gibel, P.
TI - Étude numérique des oscillations des systèmes semi-linéaires $3 x 3$
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 7
SP - 789
EP - 815
LA - fre
KW - particle method; semi-linear hyperbolic systems; oscillatory solutions; geometrical optics; convergence; method of characteristics
UR - http://eudml.org/doc/193899
ER -
References
top- [1] W. BLASCHKE, G. BOL, Geometrie der Gewebe, Springer-Verlag, 1937. Zbl0020.06701JFM64.0727.03
- [2] B. ENGQUIST, T. Y. HOU, Particle method approximation of oscillatory solutions to hyperbolic differential equations, SIAM, J. Numer. Anal., 1989, 289-319. Zbl0675.65093MR987391
- [3] J. L. JOLY, J. RAUCH, Non linear high frequency hyperbolic waves, Collection Nonlinear hyperbolic equations and field theory, 1990, 121-143. Zbl0824.35077
- [4] J. L. JOLY, J. RAUCH, High frequency semi-linear oscillations, in Wave motion, Theory, Modelling and Computation, Springer Verlag, 1986, 202-216. Zbl0703.35103MR920836
- [5] J. L. JOLY, G. METIVIER, J. RAUCH, Resonant one dimensionnal nonlinear geometric optics, J. Funct. Anal. 114, 1993, 106-231. Zbl0851.35023MR1220985
- [6] J. L. JOLY, G. METIVIER, J. RAUCH, Coherent and focusing multidimensional nonlinear geometric optics, Preprint. Zbl0836.35087MR1305424
- [7] J. L. JOLY, G. METIVIER, J. RAUCH, Generic rigorous asymptotic expansions for weakly non-linear multidimensional oscillatory waves, Duke Math. J. 70, 1993, 373-404. Zbl0815.35066MR1219817
- [8] A. MAJDA, R. ROSALES, Resonantly interacting weakly non linear hyperbolic waves 1 : a single space variable, Stud. Appl. Math. 71, 1987. Zbl0572.76066
- [9] A. MAJDA, R. ROSALES, SCHOEMBECK, A canonical System of integrodifferential equations arising in resonant nonlinear acoustics, Stud. Appl. Math. 79, 1988, 263-270. Zbl0669.76103
- [10] G. B. WHITAM, Linear and non linear waves, Wiley, 1974. Zbl0373.76001
- [11] P. GIBEL, Étude numérique d'indes oscillantes non linéaires, Thèse Université Bordeaux I.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.