Étude numérique des oscillations des systèmes semi-linéaires 3 x 3

P. Gibel

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1998)

  • Volume: 32, Issue: 7, page 789-815
  • ISSN: 0764-583X

How to cite

top

Gibel, P.. "Étude numérique des oscillations des systèmes semi-linéaires $3 x 3$." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.7 (1998): 789-815. <http://eudml.org/doc/193899>.

@article{Gibel1998,
author = {Gibel, P.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {particle method; semi-linear hyperbolic systems; oscillatory solutions; geometrical optics; convergence; method of characteristics},
language = {fre},
number = {7},
pages = {789-815},
publisher = {Dunod},
title = {Étude numérique des oscillations des systèmes semi-linéaires $3 x 3$},
url = {http://eudml.org/doc/193899},
volume = {32},
year = {1998},
}

TY - JOUR
AU - Gibel, P.
TI - Étude numérique des oscillations des systèmes semi-linéaires $3 x 3$
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 7
SP - 789
EP - 815
LA - fre
KW - particle method; semi-linear hyperbolic systems; oscillatory solutions; geometrical optics; convergence; method of characteristics
UR - http://eudml.org/doc/193899
ER -

References

top
  1. [1] W. BLASCHKE, G. BOL, Geometrie der Gewebe, Springer-Verlag, 1937. Zbl0020.06701JFM64.0727.03
  2. [2] B. ENGQUIST, T. Y. HOU, Particle method approximation of oscillatory solutions to hyperbolic differential equations, SIAM, J. Numer. Anal., 1989, 289-319. Zbl0675.65093MR987391
  3. [3] J. L. JOLY, J. RAUCH, Non linear high frequency hyperbolic waves, Collection Nonlinear hyperbolic equations and field theory, 1990, 121-143. Zbl0824.35077
  4. [4] J. L. JOLY, J. RAUCH, High frequency semi-linear oscillations, in Wave motion, Theory, Modelling and Computation, Springer Verlag, 1986, 202-216. Zbl0703.35103MR920836
  5. [5] J. L. JOLY, G. METIVIER, J. RAUCH, Resonant one dimensionnal nonlinear geometric optics, J. Funct. Anal. 114, 1993, 106-231. Zbl0851.35023MR1220985
  6. [6] J. L. JOLY, G. METIVIER, J. RAUCH, Coherent and focusing multidimensional nonlinear geometric optics, Preprint. Zbl0836.35087MR1305424
  7. [7] J. L. JOLY, G. METIVIER, J. RAUCH, Generic rigorous asymptotic expansions for weakly non-linear multidimensional oscillatory waves, Duke Math. J. 70, 1993, 373-404. Zbl0815.35066MR1219817
  8. [8] A. MAJDA, R. ROSALES, Resonantly interacting weakly non linear hyperbolic waves 1 : a single space variable, Stud. Appl. Math. 71, 1987. Zbl0572.76066
  9. [9] A. MAJDA, R. ROSALES, SCHOEMBECK, A canonical System of integrodifferential equations arising in resonant nonlinear acoustics, Stud. Appl. Math. 79, 1988, 263-270. Zbl0669.76103
  10. [10] G. B. WHITAM, Linear and non linear waves, Wiley, 1974. Zbl0373.76001
  11. [11] P. GIBEL, Étude numérique d'indes oscillantes non linéaires, Thèse Université Bordeaux I. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.