A posteriori error estimates for nonlinear problems. -estimates for finite element discretizations of elliptic equations
- Volume: 32, Issue: 7, page 817-842
- ISSN: 0764-583X
Access Full Article
topHow to cite
topVerfürth, R.. "A posteriori error estimates for nonlinear problems. $L^r$-estimates for finite element discretizations of elliptic equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.7 (1998): 817-842. <http://eudml.org/doc/193900>.
@article{Verfürth1998,
author = {Verfürth, R.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {a posteriori error estimates; finite element; nonlinear elliptic equations; Navier-Stokes equations},
language = {eng},
number = {7},
pages = {817-842},
publisher = {Dunod},
title = {A posteriori error estimates for nonlinear problems. $L^r$-estimates for finite element discretizations of elliptic equations},
url = {http://eudml.org/doc/193900},
volume = {32},
year = {1998},
}
TY - JOUR
AU - Verfürth, R.
TI - A posteriori error estimates for nonlinear problems. $L^r$-estimates for finite element discretizations of elliptic equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 7
SP - 817
EP - 842
LA - eng
KW - a posteriori error estimates; finite element; nonlinear elliptic equations; Navier-Stokes equations
UR - http://eudml.org/doc/193900
ER -
References
top- [1] R. A. ADAMS, Sobolev Spaces. Academic Press, New York, 1975. Zbl0314.46030MR450957
- [2] I. BABUŠKA and W. C. RHEINBOLDT, Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15, 736-754 (1978). Zbl0398.65069MR483395
- [3] I. BABUŠKA and W. C. RHEINBOLDT, A posteriori error estimates for the finite element method. Int. J. Numer. Methods in Engrg. 12, 1597-1615 (1978). Zbl0396.65068
- [4] E. BÄNSCH and K. G. SIEBERT, A posteriori error estimation for nonlinear problems by dual techniques. Preprint, Universität Freiburg, 1995.
- [5] C. BERNARDI, B. MÉTIVET and R. VERFÜRTH, Analyse numérique d'indicateurs d'erreur. Preprint R 93025, Université Paris VI, 1993.
- [6] P. G. CIARLET, The Finite Element Method for Elliptic Problems. North Holland, Amsterdam, 1978. Zbl0383.65058MR520174
- [7] P. CLÉMENT, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9, 77-84 (1975). Zbl0368.65008MR400739
- [8] M. DAUGE, Elliptic Boundary Value Problems on Corner Domains. Springer, Lecture Notes in Mathematics 1341, Berlin, 1988. Zbl0668.35001MR961439
- [9] K. ERIKSSON, An adaptive finite element method with efficient maximum norm error control for elliptic problems. Math. Models and Math. in Appl. Sci. 4, 313-329 (1994). Zbl0806.65106MR1282238
- [10] K. ERIKSSON and C. JOHNSON, An adaptive finite element method for linear elliptic problems. Math. Comput. 50, 361-383 (1988). Zbl0644.65080MR929542
- [11] K. ERIKSSON and C. JOHNSON, Adaptive finite element methods for parabolic problems I. A linear model problem. SIAM J. Numer. Anal. 28, 43-77 (1991). Zbl0732.65093MR1083324
- [12] K. ERIKSSON and C. JOHNSON, Adaptive finite element methods for parabolic problems IV. Nonlinear problems. Chalmers University of Göteborg, Preprint 1992, 44 (1992). Zbl0835.65116MR1360457
- [13] V. GIRAULT and P. A. RAVIART, Finite Element Approximation of the Navier-Stokes Equations. Computational Methods in Physics, Springer, Berlin, 2nd édition, 1986. Zbl0413.65081MR548867
- [14] P. GRISVARD, Elliptic Problems in Nonsmooth Domains. Pitman, Boston, 1985. Zbl0695.35060MR775683
- [15] C. JOHNSON and P. HANSBO, Adaptive finite element methods in computational mechanics. Comp. Math. Appl. Mech. Engrg. 101, 143-181 (1992). Zbl0778.73071MR1195583
- [16] R. H. NOCHETTO, Pointwise a posteriori error estimates for elliptic problems on highly graded meshes. Math. Comput. 64, 1-22 (1995). Zbl0920.65063MR1270622
- [17] J. POUSIN and J. RAPPAZ, Consistency, stability, a priori, and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems. Numer. Math. 69, 213-231 (1994). Zbl0822.65034MR1310318
- [18] R. VERFÜRTH, A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations. Math. Comput. (206), 445-475 (1994). Zbl0799.65112MR1213837
- [19] R. VERFÜRTH, A posteriori error estimates for nonlinear problems. Finite element discretizations of parabolic problems. Bericht Nr. 180, Ruhr-Universität Bochum, 1995. Zbl0869.65067
- [20] R. VERFÜRTH, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner Series in advances in numerical mathematics, Stuttgart, 1996. Zbl0853.65108
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.