A posteriori error estimates for nonlinear problems. L r -estimates for finite element discretizations of elliptic equations

R. Verfürth

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1998)

  • Volume: 32, Issue: 7, page 817-842
  • ISSN: 0764-583X

How to cite

top

Verfürth, R.. "A posteriori error estimates for nonlinear problems. $L^r$-estimates for finite element discretizations of elliptic equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 32.7 (1998): 817-842. <http://eudml.org/doc/193900>.

@article{Verfürth1998,
author = {Verfürth, R.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {a posteriori error estimates; finite element; nonlinear elliptic equations; Navier-Stokes equations},
language = {eng},
number = {7},
pages = {817-842},
publisher = {Dunod},
title = {A posteriori error estimates for nonlinear problems. $L^r$-estimates for finite element discretizations of elliptic equations},
url = {http://eudml.org/doc/193900},
volume = {32},
year = {1998},
}

TY - JOUR
AU - Verfürth, R.
TI - A posteriori error estimates for nonlinear problems. $L^r$-estimates for finite element discretizations of elliptic equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1998
PB - Dunod
VL - 32
IS - 7
SP - 817
EP - 842
LA - eng
KW - a posteriori error estimates; finite element; nonlinear elliptic equations; Navier-Stokes equations
UR - http://eudml.org/doc/193900
ER -

References

top
  1. [1] R. A. ADAMS, Sobolev Spaces. Academic Press, New York, 1975. Zbl0314.46030MR450957
  2. [2] I. BABUŠKA and W. C. RHEINBOLDT, Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15, 736-754 (1978). Zbl0398.65069MR483395
  3. [3] I. BABUŠKA and W. C. RHEINBOLDT, A posteriori error estimates for the finite element method. Int. J. Numer. Methods in Engrg. 12, 1597-1615 (1978). Zbl0396.65068
  4. [4] E. BÄNSCH and K. G. SIEBERT, A posteriori error estimation for nonlinear problems by dual techniques. Preprint, Universität Freiburg, 1995. 
  5. [5] C. BERNARDI, B. MÉTIVET and R. VERFÜRTH, Analyse numérique d'indicateurs d'erreur. Preprint R 93025, Université Paris VI, 1993. 
  6. [6] P. G. CIARLET, The Finite Element Method for Elliptic Problems. North Holland, Amsterdam, 1978. Zbl0383.65058MR520174
  7. [7] P. CLÉMENT, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9, 77-84 (1975). Zbl0368.65008MR400739
  8. [8] M. DAUGE, Elliptic Boundary Value Problems on Corner Domains. Springer, Lecture Notes in Mathematics 1341, Berlin, 1988. Zbl0668.35001MR961439
  9. [9] K. ERIKSSON, An adaptive finite element method with efficient maximum norm error control for elliptic problems. Math. Models and Math. in Appl. Sci. 4, 313-329 (1994). Zbl0806.65106MR1282238
  10. [10] K. ERIKSSON and C. JOHNSON, An adaptive finite element method for linear elliptic problems. Math. Comput. 50, 361-383 (1988). Zbl0644.65080MR929542
  11. [11] K. ERIKSSON and C. JOHNSON, Adaptive finite element methods for parabolic problems I. A linear model problem. SIAM J. Numer. Anal. 28, 43-77 (1991). Zbl0732.65093MR1083324
  12. [12] K. ERIKSSON and C. JOHNSON, Adaptive finite element methods for parabolic problems IV. Nonlinear problems. Chalmers University of Göteborg, Preprint 1992, 44 (1992). Zbl0835.65116MR1360457
  13. [13] V. GIRAULT and P. A. RAVIART, Finite Element Approximation of the Navier-Stokes Equations. Computational Methods in Physics, Springer, Berlin, 2nd édition, 1986. Zbl0413.65081MR548867
  14. [14] P. GRISVARD, Elliptic Problems in Nonsmooth Domains. Pitman, Boston, 1985. Zbl0695.35060MR775683
  15. [15] C. JOHNSON and P. HANSBO, Adaptive finite element methods in computational mechanics. Comp. Math. Appl. Mech. Engrg. 101, 143-181 (1992). Zbl0778.73071MR1195583
  16. [16] R. H. NOCHETTO, Pointwise a posteriori error estimates for elliptic problems on highly graded meshes. Math. Comput. 64, 1-22 (1995). Zbl0920.65063MR1270622
  17. [17] J. POUSIN and J. RAPPAZ, Consistency, stability, a priori, and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems. Numer. Math. 69, 213-231 (1994). Zbl0822.65034MR1310318
  18. [18] R. VERFÜRTH, A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations. Math. Comput. (206), 445-475 (1994). Zbl0799.65112MR1213837
  19. [19] R. VERFÜRTH, A posteriori error estimates for nonlinear problems. Finite element discretizations of parabolic problems. Bericht Nr. 180, Ruhr-Universität Bochum, 1995. Zbl0869.65067
  20. [20] R. VERFÜRTH, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner Series in advances in numerical mathematics, Stuttgart, 1996. Zbl0853.65108

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.