Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate

Claire Chainais-Hillairet

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1999)

  • Volume: 33, Issue: 1, page 129-156
  • ISSN: 0764-583X

How to cite

top

Chainais-Hillairet, Claire. "Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.1 (1999): 129-156. <http://eudml.org/doc/193907>.

@article{Chainais1999,
author = {Chainais-Hillairet, Claire},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite volume method; error estimate; nonlinear conservation laws; convergence; entropy solution},
language = {eng},
number = {1},
pages = {129-156},
publisher = {Dunod},
title = {Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate},
url = {http://eudml.org/doc/193907},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Chainais-Hillairet, Claire
TI - Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 1
SP - 129
EP - 156
LA - eng
KW - finite volume method; error estimate; nonlinear conservation laws; convergence; entropy solution
UR - http://eudml.org/doc/193907
ER -

References

top
  1. [1] B. Cockburn, F. Coquel and P. Lefloch, An error estimate for finite volume methods for multidimensional convervation laws. Math. Comp. 63 (1994) 77-103. Zbl0855.65103MR1240657
  2. [2] R. Eymard, T. Gallouët, M. Ghilani and R. Herbin, Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by some finite volume schemes. IMA. J. Numer. Anal. 18 (1998) 563-594. Zbl0973.65078MR1681074
  3. [3] R. Eymard, T. Gallouët and R. Herbin, Convergence of a finite volume seheme for a nonlinear hyperbolic equation, Proceedings of the Third colloquium on numerical analysis, edited by D. Bainov and V. Covachev. Elsevier (1995) 61-70. Zbl0843.65068MR1455950
  4. [4] R. Eymard, T. Gallouët and R. Herbin, Existence and uniqueness of the entropy solution to a nonlinear hyperboiic equation. Chin. Ann. Math. B16 (1995) 1-14. Zbl0830.35077MR1338923
  5. [5] S. N. Kruskov, First order quasilinear equations with several space variable. Math. USSR. Sb. 10 (1970) 217-243. Zbl0215.16203
  6. [6] R. Di Perna, Measure-valued solutions to conservation laws. Arch. Rat. Mech Anal. 88 (1985) 223-270. Zbl0616.35055MR775191
  7. [7] R. J. Le Veque, Numerical methods for conservations laws. Birkhaeuser (1990). Zbl0723.65067MR1077828
  8. [8] J.P. Vila, Convergence and error estimate in finite volume schemes for gênerai multidimensional conservation laws. RAIRO Model. Math. Anal. Num. 28 (1994) 267-285. Zbl0823.65087MR1275345

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.