Approximation of a martensitic laminate with varying volume fractions

Bo Li; Mitchell Luskin

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1999)

  • Volume: 33, Issue: 1, page 67-87
  • ISSN: 0764-583X

How to cite

top

Li, Bo, and Luskin, Mitchell. "Approximation of a martensitic laminate with varying volume fractions." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.1 (1999): 67-87. <http://eudml.org/doc/193915>.

@article{Li1999,
author = {Li, Bo, Luskin, Mitchell},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {orthorhombic to monoclinic transformation; multi-well energy minimization; martensitic crystals; cubic to tetragonal transformation; energy minimizing sequences; error bounds; finite element approximation},
language = {eng},
number = {1},
pages = {67-87},
publisher = {Dunod},
title = {Approximation of a martensitic laminate with varying volume fractions},
url = {http://eudml.org/doc/193915},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Li, Bo
AU - Luskin, Mitchell
TI - Approximation of a martensitic laminate with varying volume fractions
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 1
SP - 67
EP - 87
LA - eng
KW - orthorhombic to monoclinic transformation; multi-well energy minimization; martensitic crystals; cubic to tetragonal transformation; energy minimizing sequences; error bounds; finite element approximation
UR - http://eudml.org/doc/193915
ER -

References

top
  1. [1] R. Adams, Sobolev Spaces. Academic Press, New York (1975). Zbl0314.46030MR450957
  2. [2] J. Ball and R. James, Fine phase mixtures as minimizers of energy. Arch. Rat. Mech. Anal 100 (1987) 13-52. Zbl0629.49020MR906132
  3. [3] J. Ball and R. James, Proposed experimental tests of a theory of fine microstructure and the two-well problem. Phil. Trans. R. Soc.Lond. A 338 (1992) 389-450. Zbl0758.73009
  4. [4] Z. S. Basinski and J. W. Christian, Experiments on the martensitic transformation in single crystals of indium-thallium alloys.Acta Metall. 2 (1954) 148-166. 
  5. [5] M. W. Burkart and T. A. Read, Diffusionless phase changes in the indium-thallium System. Trans. AIME J. Metals 197 (1953)1516-1524. 
  6. [6] C. Carstensen and P. Plechac, Numerical solution of the scalar double-well problem allowing microstructure. Math. Comp. 66 (1997) 997-1026. Zbl0870.65055MR1415798
  7. [7] M. Chipot, Numerical analysis of oscillations in nonconvex problems. Numer. Math. 59 (1991) 747-767. Zbl0712.65063MR1128031
  8. [8] M. Chipot and C. Collins, Numerical approximations in variational problems with potential wells. SIAM J. Numer. Anal 29 (1992) 1002-1019. Zbl0763.65049MR1173182
  9. [9] M. Chipot, C. Collins and D. Kinderlehrer, Numerical analysis of oscillations in multiple well problems. Numer. Math. 70 (1995) 259-282. Zbl0824.65045MR1330864
  10. [10] M. Chipot and D. Kinderlehrer, Equilibrium configurations of crystals. Arch. Rat Mech. Anal 103 (1988) 237-277. Zbl0673.73012MR955934
  11. [11] P. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). Zbl0383.65058MR520174
  12. [12] C. Collins, D. Kinderlehrer and M. Luskin, Numerical approximation of the solution of a variational problem with a double well potential. SIAM J. Numer. Anal 28 (1991) 321-332. Zbl0725.65067MR1087507
  13. [13] C. Collins and M. Luskin, Optimal order estimates for the finite element approximation of the solution of a nonconvex variational problem. Math. Comp. 57 (1991) 621-637. Zbl0735.65042MR1094944
  14. [14] J. Ericksen, Constitutive theory for some constrained elastic crystals. J. Solids and Structures 22 (1986) 951-964. Zbl0595.73001
  15. [15] J. Ericksen, Stable equilibrium configurations of elastic crystals. Arch. Rat. Mech. Anal. (1986) 1-14. Zbl0597.73006MR831767
  16. [16] D. French, On the convergence of finite element approximations of a relaxed variational problem. SIAM J. Numer. Anal. 28, (1991) 419-436. Zbl0696.65070MR1043613
  17. [17] P.-A. Gremaud, Numerical analysis of a nonconvex variational problem related to solid-solid phase transitions. SIAM J. Numer. Anal. 31 (1994) 111-127. Zbl0797.65052MR1259968
  18. [18] R. James, Minimizing sequences and the microstructure of crystals in Proceedings of the-Society of Metals Conference on Phase Transformations. Cambridge University Press (1989). 
  19. [19] D. Kinderlehrer, Twinning in crystals II. In Metastability and Incompletely Posed Problems. S. Antman, J.L. Ericksen, D. Kinderlehrer and I. Muller Eds. IMA Volumes in Mathematics and Its Applications. Springer-Verlag, New York 3 (1987) 185-212. Zbl0638.73007MR870005
  20. [20] D. Kinderlehrer and P. Pedregal, Characterizations of gradient Young measures. Arch. Rat Mech. Anal 115, (1991) 329-365. Zbl0754.49020MR1120852
  21. [21] R. Kohn, Relaxation of a double-well energy. Cont Mech. Thermodyn. 3 (1991) 193-236. Zbl0825.73029MR1122017
  22. [22] B. Li and M. Luskin, Finite element analysis of microstructure for the cubic to tetragonal transformation. SIAM J. Numer. Anal 35 (1998) 376-392. Zbl0919.49020MR1618484
  23. [23] B. Li and M. Luskin, Nonconforming finite element approximation of crystalline microstructure. Math. Comp. 67 (1998) 917-946. Zbl0901.73076MR1459391
  24. [24] M. Luskin, On the computation of crystalline microstructure. Acta Numerica (1996) 191-257. Zbl0867.65033MR1624603
  25. [25] M. Luskin, Approximation of a laminated microstructure for a rotationally invariant, double well energy density. Namer. Math. 75 (1997) 205-221. Zbl0874.73060MR1421987
  26. [26] M. Luskin and L. Ma, Analysis of the finite element approximation of microstructure in micromagnetics. SIAM J. Numer. Anal. 29 (1992) 320-331. Zbl0760.65113MR1154269
  27. [27] R. A. Nicolaides and N. Walkington, Strong convergence of numerical solutions to degenerate variational problems. Math. Comp. 64 (1995) 117-127. Zbl0821.65040MR1262281
  28. [28] P. Pedregal, Numerical approximation of parametrized measures. Num. Funct. Anal. Opt. 16, (1995) 1049-1066. Zbl0848.65049MR1355286
  29. [29] P. Pedregal, On the numerical analysis of non-convex variational problems. Numer. Math. 74 (1996) 325-336. Zbl0858.65059MR1408606
  30. [30] A. Quarteronia and A. Valli, Numerical Approximation of Partial Differential Equations. Springer-Verlag, Berlin (1994). Zbl0803.65088MR1299729
  31. [31] T. Roubíček, Numerical approximation of relaxed variational problems. J. Convex Analysis 3, (1996) 329-347. Zbl0881.65058MR1448060
  32. [32] V. Šverák, Lower-semicontinuity of variational integrals and compensated compactness in Proceedings ICM 94 Birkhäuser. Zürich (1995). Zbl0852.49010MR1404015
  33. [33] L. Tartar, Compensated compactness and applications to partial differential equations in Nonlinear analysis and mechanics. Pitman Research Notes in Mathematics. R. Knops Eds. Pitman, London (1978). Zbl0437.35004MR584398
  34. [34] J. Wloka, Partial Differential Equations. Cambridge University Press, Cambridge (1987). Zbl0623.35006MR895589

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.