Approximation of a martensitic laminate with varying volume fractions
- Volume: 33, Issue: 1, page 67-87
- ISSN: 0764-583X
Access Full Article
topHow to cite
topLi, Bo, and Luskin, Mitchell. "Approximation of a martensitic laminate with varying volume fractions." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.1 (1999): 67-87. <http://eudml.org/doc/193915>.
@article{Li1999,
author = {Li, Bo, Luskin, Mitchell},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {orthorhombic to monoclinic transformation; multi-well energy minimization; martensitic crystals; cubic to tetragonal transformation; energy minimizing sequences; error bounds; finite element approximation},
language = {eng},
number = {1},
pages = {67-87},
publisher = {Dunod},
title = {Approximation of a martensitic laminate with varying volume fractions},
url = {http://eudml.org/doc/193915},
volume = {33},
year = {1999},
}
TY - JOUR
AU - Li, Bo
AU - Luskin, Mitchell
TI - Approximation of a martensitic laminate with varying volume fractions
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 1
SP - 67
EP - 87
LA - eng
KW - orthorhombic to monoclinic transformation; multi-well energy minimization; martensitic crystals; cubic to tetragonal transformation; energy minimizing sequences; error bounds; finite element approximation
UR - http://eudml.org/doc/193915
ER -
References
top- [1] R. Adams, Sobolev Spaces. Academic Press, New York (1975). Zbl0314.46030MR450957
- [2] J. Ball and R. James, Fine phase mixtures as minimizers of energy. Arch. Rat. Mech. Anal 100 (1987) 13-52. Zbl0629.49020MR906132
- [3] J. Ball and R. James, Proposed experimental tests of a theory of fine microstructure and the two-well problem. Phil. Trans. R. Soc.Lond. A 338 (1992) 389-450. Zbl0758.73009
- [4] Z. S. Basinski and J. W. Christian, Experiments on the martensitic transformation in single crystals of indium-thallium alloys.Acta Metall. 2 (1954) 148-166.
- [5] M. W. Burkart and T. A. Read, Diffusionless phase changes in the indium-thallium System. Trans. AIME J. Metals 197 (1953)1516-1524.
- [6] C. Carstensen and P. Plechac, Numerical solution of the scalar double-well problem allowing microstructure. Math. Comp. 66 (1997) 997-1026. Zbl0870.65055MR1415798
- [7] M. Chipot, Numerical analysis of oscillations in nonconvex problems. Numer. Math. 59 (1991) 747-767. Zbl0712.65063MR1128031
- [8] M. Chipot and C. Collins, Numerical approximations in variational problems with potential wells. SIAM J. Numer. Anal 29 (1992) 1002-1019. Zbl0763.65049MR1173182
- [9] M. Chipot, C. Collins and D. Kinderlehrer, Numerical analysis of oscillations in multiple well problems. Numer. Math. 70 (1995) 259-282. Zbl0824.65045MR1330864
- [10] M. Chipot and D. Kinderlehrer, Equilibrium configurations of crystals. Arch. Rat Mech. Anal 103 (1988) 237-277. Zbl0673.73012MR955934
- [11] P. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). Zbl0383.65058MR520174
- [12] C. Collins, D. Kinderlehrer and M. Luskin, Numerical approximation of the solution of a variational problem with a double well potential. SIAM J. Numer. Anal 28 (1991) 321-332. Zbl0725.65067MR1087507
- [13] C. Collins and M. Luskin, Optimal order estimates for the finite element approximation of the solution of a nonconvex variational problem. Math. Comp. 57 (1991) 621-637. Zbl0735.65042MR1094944
- [14] J. Ericksen, Constitutive theory for some constrained elastic crystals. J. Solids and Structures 22 (1986) 951-964. Zbl0595.73001
- [15] J. Ericksen, Stable equilibrium configurations of elastic crystals. Arch. Rat. Mech. Anal. (1986) 1-14. Zbl0597.73006MR831767
- [16] D. French, On the convergence of finite element approximations of a relaxed variational problem. SIAM J. Numer. Anal. 28, (1991) 419-436. Zbl0696.65070MR1043613
- [17] P.-A. Gremaud, Numerical analysis of a nonconvex variational problem related to solid-solid phase transitions. SIAM J. Numer. Anal. 31 (1994) 111-127. Zbl0797.65052MR1259968
- [18] R. James, Minimizing sequences and the microstructure of crystals in Proceedings of the-Society of Metals Conference on Phase Transformations. Cambridge University Press (1989).
- [19] D. Kinderlehrer, Twinning in crystals II. In Metastability and Incompletely Posed Problems. S. Antman, J.L. Ericksen, D. Kinderlehrer and I. Muller Eds. IMA Volumes in Mathematics and Its Applications. Springer-Verlag, New York 3 (1987) 185-212. Zbl0638.73007MR870005
- [20] D. Kinderlehrer and P. Pedregal, Characterizations of gradient Young measures. Arch. Rat Mech. Anal 115, (1991) 329-365. Zbl0754.49020MR1120852
- [21] R. Kohn, Relaxation of a double-well energy. Cont Mech. Thermodyn. 3 (1991) 193-236. Zbl0825.73029MR1122017
- [22] B. Li and M. Luskin, Finite element analysis of microstructure for the cubic to tetragonal transformation. SIAM J. Numer. Anal 35 (1998) 376-392. Zbl0919.49020MR1618484
- [23] B. Li and M. Luskin, Nonconforming finite element approximation of crystalline microstructure. Math. Comp. 67 (1998) 917-946. Zbl0901.73076MR1459391
- [24] M. Luskin, On the computation of crystalline microstructure. Acta Numerica (1996) 191-257. Zbl0867.65033MR1624603
- [25] M. Luskin, Approximation of a laminated microstructure for a rotationally invariant, double well energy density. Namer. Math. 75 (1997) 205-221. Zbl0874.73060MR1421987
- [26] M. Luskin and L. Ma, Analysis of the finite element approximation of microstructure in micromagnetics. SIAM J. Numer. Anal. 29 (1992) 320-331. Zbl0760.65113MR1154269
- [27] R. A. Nicolaides and N. Walkington, Strong convergence of numerical solutions to degenerate variational problems. Math. Comp. 64 (1995) 117-127. Zbl0821.65040MR1262281
- [28] P. Pedregal, Numerical approximation of parametrized measures. Num. Funct. Anal. Opt. 16, (1995) 1049-1066. Zbl0848.65049MR1355286
- [29] P. Pedregal, On the numerical analysis of non-convex variational problems. Numer. Math. 74 (1996) 325-336. Zbl0858.65059MR1408606
- [30] A. Quarteronia and A. Valli, Numerical Approximation of Partial Differential Equations. Springer-Verlag, Berlin (1994). Zbl0803.65088MR1299729
- [31] T. Roubíček, Numerical approximation of relaxed variational problems. J. Convex Analysis 3, (1996) 329-347. Zbl0881.65058MR1448060
- [32] V. Šverák, Lower-semicontinuity of variational integrals and compensated compactness in Proceedings ICM 94 Birkhäuser. Zürich (1995). Zbl0852.49010MR1404015
- [33] L. Tartar, Compensated compactness and applications to partial differential equations in Nonlinear analysis and mechanics. Pitman Research Notes in Mathematics. R. Knops Eds. Pitman, London (1978). Zbl0437.35004MR584398
- [34] J. Wloka, Partial Differential Equations. Cambridge University Press, Cambridge (1987). Zbl0623.35006MR895589
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.