The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper we study a unidirectional and elastic fiber composite. We use the homogenization method to obtain numerical results of the plane strain bulk modulus and the transverse shear modulus. The results are compared with the Hashin-Shtrikman bounds and are found to be close to the lower bounds in both cases. This indicates that the lower bounds might be used as a first approximation of the plane strain bulk modulus and the transverse shear modulus. We also point out the connection with the...
The theory of
compensated compactness of Murat and Tartar links the algebraic condition
of rank-r convexity with the analytic condition of weak
lower
semicontinuity. The former is an algebraic
condition and therefore it is, in principle, very easy to use. However,
in applications of this theory, the need for an efficient classification of
rank-r convex forms arises. In the present paper,
we define the concept of extremal 2-forms and characterize them
in the rotationally invariant jointly...
A shear deformation theory is developed to analyse the geometrically nonlinear behaviour of layered composite plates under transverse loads. The theory accounts for the transverse shear (as in the Reissner Mindlin plate theory) and large rotations (in the sense of the von Karman theory) suitable for simulating the behaviour of moderately thick plates. Square and rectangular plates are considered: the numerical results are obtained by a finite element computational procedure and are given for various...
We give results for the approximation of a laminate with
varying volume fractions for multi-well energy minimization
problems modeling martensitic crystals that
can undergo either an orthorhombic
to monoclinic or a cubic to tetragonal transformation.
We construct energy minimizing sequences of deformations which satisfy
the corresponding boundary condition, and we
establish a series of error bounds in terms of the elastic energy
for the approximation of the limiting macroscopic
deformation and...
Per i continui bidimensionali sottili isotropi in c.a., a mezzo del teorema generalizzato del minimo lavoro, si dimostra che il carico relativo alla formazione del completo quadro fessurativo si può ottenere considerando l'assetto finale di apertura delle distorsioni di Volterra, evitando di seguire l'evoluzione del fenomeno definibile da un punto di vista operativo mediante distorsioni localizzate di Somigliana.
Currently displaying 1 –
20 of
61