Finite-differences discretizations of the Mumford-Shah functional

Antonin Chambolle

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1999)

  • Volume: 33, Issue: 2, page 261-288
  • ISSN: 0764-583X

How to cite

top

Chambolle, Antonin. "Finite-differences discretizations of the Mumford-Shah functional." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.2 (1999): 261-288. <http://eudml.org/doc/193920>.

@article{Chambolle1999,
author = {Chambolle, Antonin},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite-differences discretizations; convergence; Mumford and Shah's functional; Blake and Zisserman's weak membrane energy; discrete functional; segmentations of images},
language = {eng},
number = {2},
pages = {261-288},
publisher = {Dunod},
title = {Finite-differences discretizations of the Mumford-Shah functional},
url = {http://eudml.org/doc/193920},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Chambolle, Antonin
TI - Finite-differences discretizations of the Mumford-Shah functional
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 2
SP - 261
EP - 288
LA - eng
KW - finite-differences discretizations; convergence; Mumford and Shah's functional; Blake and Zisserman's weak membrane energy; discrete functional; segmentations of images
UR - http://eudml.org/doc/193920
ER -

References

top
  1. [1] L. AmbrosioA compactness theorem for a new class of functions with bounded variation. Boll. Un. Mat. Ital. (7) 3 (1989) 857 881. Zbl0767.49001MR1032614
  2. [2] L. AmbrosioVariational problems in SBV and image segmentation. Acta Appl. Math. 17 (1989) 1-40. Zbl0697.49004MR1029833
  3. [3] L. AmbrosioExistence theory for a new class of vanational problems Arc. Rational Mech. Anal. 111 (1990) 291-322. Zbl0711.49064MR1068374
  4. [4] L. Ambrosio and V. M. TortorelliApproximation of functionals depending on jumps by elliptic functionals via Γ-convergence Comm. Pure Appl. Math. 43 (1990) 999-1036. Zbl0722.49020MR1075076
  5. [5] L. Ambrosio and V. M. TortorelliOn the approximation of free discontinuity problems. Boll. Un. Mat. Ital. (7) 6 (1992)105-123. Zbl0776.49029MR1164940
  6. [6] G. Aubert, M. Barlaud, P. Charbonnier and L. Blanc-FéraudDeterministic edge-preserving regularization in computed imaging. Technical report. TR#94-01, I3S, CNRS URA 1376 Sophia-Antipohs, France (1994). 
  7. [7] A. Blake and A. ZissermanVisual Reconstruction. MIT Press (1987). MR919733
  8. [8] B. Bourdin and A. ChambolleImplementation of a flnite-elements approximation of the Mumford Shah functional Technical report 9844, Ceremade, University of Paris-Dauphine, 1998; preprint LPMTM, University of Paris Nord, 1998, Numer. Math. (to appear). MR1771782
  9. [9] A. ChambolleUn théorème de Γ-convergence pour la segmentation des signaux. C. R. Acad. Sci. Paris 314 (1992) 191-196. Zbl0772.49010MR1150831
  10. [10] A. ChambolleImage segmentation by variational methods: Mumford and Shah functional and the discrete approximations. SIAM J. Appl. Math. 55 (1995) 827-863. Zbl0830.49015MR1331589
  11. [11] A. Chambolle and G. Dal MasoDiscrete approximation of the Mumford-Shah functional in dimension two Technical Report. 9820, Ceremade, University of Paris-Dauphine, 1998 preprint SISSA 29/98/M, Trieste RAIRO Model. Math. Anal. Numer.(to appear). Zbl0943.49011MR1726478
  12. [12] G. Dal MasoAn introduction to Γ-convergence Birkhäuser, Boston (1993). Zbl0816.49001MR1201152
  13. [13] E. De Giorgi, M. Carriero and A. LeaciExistence theorem for a minimum problem with free discontinuity set. Arch. Rational Mech. Anal. 108 (1989) 195-218. Zbl0682.49002MR1012174
  14. [14] L. C. Evans and R. F. GanepyMeasure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992). Zbl0804.28001MR1158660
  15. [15] H. FedererGeometric Measure Theory. Springer Verlag, New York (1969). Zbl0176.00801MR257325
  16. [16] D. Geiger and F. GirosiParallel and determmistic algorithms for MRFs: surface reconstruction. IEEE Trans. PAMI 13 (1991) 401-412. 
  17. [17] D. Geiger and A. YuilleA common framework for image segmentation. Internat J. Comput. Vision 6 (1991) 227-243. 
  18. [18] D. Geman and G. ReynoldsConstrained image restoration and the recovery of discontinuities. IEEE Trans. PAMI 3 (1992) 367-383. 
  19. [19] S. Geman and D. Geman. Stochatic relaxation, Gibbs distributions, and the Bayesian restoration of image. IEEE Trans. PAMI 6 (1984). Zbl0573.62030
  20. [20] E. Giusti. Minimal surfaces and functions of bounded variation. Birkhäuser, Boston (1984). Zbl0545.49018MR775682
  21. [21] M. Gobbino. Finite difference approximation of the Mumford-Shah functional.Comm. Pure Appl. Math. 51 (1998) 197-228. Zbl0888.49013MR1488299
  22. [22] D. Mumford and J. Shah. Optimal approximation by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42 (1989) 577-685. Zbl0691.49036MR997568
  23. [23] C. R. Vogel and M. E. Oman. Iterative methods for total variation denoismg, in Procedings of the Colorado Conference on Iterative Methods (1994). Zbl0847.65083
  24. [24] W. P. Ziemer. Weakly Differentiable Functions. Springer-Verlag, Berlin (1989). Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.