Finite-differences discretizations of the Mumford-Shah functional
- Volume: 33, Issue: 2, page 261-288
- ISSN: 0764-583X
Access Full Article
topHow to cite
topChambolle, Antonin. "Finite-differences discretizations of the Mumford-Shah functional." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.2 (1999): 261-288. <http://eudml.org/doc/193920>.
@article{Chambolle1999,
author = {Chambolle, Antonin},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite-differences discretizations; convergence; Mumford and Shah's functional; Blake and Zisserman's weak membrane energy; discrete functional; segmentations of images},
language = {eng},
number = {2},
pages = {261-288},
publisher = {Dunod},
title = {Finite-differences discretizations of the Mumford-Shah functional},
url = {http://eudml.org/doc/193920},
volume = {33},
year = {1999},
}
TY - JOUR
AU - Chambolle, Antonin
TI - Finite-differences discretizations of the Mumford-Shah functional
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 2
SP - 261
EP - 288
LA - eng
KW - finite-differences discretizations; convergence; Mumford and Shah's functional; Blake and Zisserman's weak membrane energy; discrete functional; segmentations of images
UR - http://eudml.org/doc/193920
ER -
References
top- [1] L. AmbrosioA compactness theorem for a new class of functions with bounded variation. Boll. Un. Mat. Ital. (7) 3 (1989) 857 881. Zbl0767.49001MR1032614
- [2] L. AmbrosioVariational problems in SBV and image segmentation. Acta Appl. Math. 17 (1989) 1-40. Zbl0697.49004MR1029833
- [3] L. AmbrosioExistence theory for a new class of vanational problems Arc. Rational Mech. Anal. 111 (1990) 291-322. Zbl0711.49064MR1068374
- [4] L. Ambrosio and V. M. TortorelliApproximation of functionals depending on jumps by elliptic functionals via Γ-convergence Comm. Pure Appl. Math. 43 (1990) 999-1036. Zbl0722.49020MR1075076
- [5] L. Ambrosio and V. M. TortorelliOn the approximation of free discontinuity problems. Boll. Un. Mat. Ital. (7) 6 (1992)105-123. Zbl0776.49029MR1164940
- [6] G. Aubert, M. Barlaud, P. Charbonnier and L. Blanc-FéraudDeterministic edge-preserving regularization in computed imaging. Technical report. TR#94-01, I3S, CNRS URA 1376 Sophia-Antipohs, France (1994).
- [7] A. Blake and A. ZissermanVisual Reconstruction. MIT Press (1987). MR919733
- [8] B. Bourdin and A. ChambolleImplementation of a flnite-elements approximation of the Mumford Shah functional Technical report 9844, Ceremade, University of Paris-Dauphine, 1998; preprint LPMTM, University of Paris Nord, 1998, Numer. Math. (to appear). MR1771782
- [9] A. ChambolleUn théorème de Γ-convergence pour la segmentation des signaux. C. R. Acad. Sci. Paris 314 (1992) 191-196. Zbl0772.49010MR1150831
- [10] A. ChambolleImage segmentation by variational methods: Mumford and Shah functional and the discrete approximations. SIAM J. Appl. Math. 55 (1995) 827-863. Zbl0830.49015MR1331589
- [11] A. Chambolle and G. Dal MasoDiscrete approximation of the Mumford-Shah functional in dimension two Technical Report. 9820, Ceremade, University of Paris-Dauphine, 1998 preprint SISSA 29/98/M, Trieste RAIRO Model. Math. Anal. Numer.(to appear). Zbl0943.49011MR1726478
- [12] G. Dal MasoAn introduction to Γ-convergence Birkhäuser, Boston (1993). Zbl0816.49001MR1201152
- [13] E. De Giorgi, M. Carriero and A. LeaciExistence theorem for a minimum problem with free discontinuity set. Arch. Rational Mech. Anal. 108 (1989) 195-218. Zbl0682.49002MR1012174
- [14] L. C. Evans and R. F. GanepyMeasure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992). Zbl0804.28001MR1158660
- [15] H. FedererGeometric Measure Theory. Springer Verlag, New York (1969). Zbl0176.00801MR257325
- [16] D. Geiger and F. GirosiParallel and determmistic algorithms for MRFs: surface reconstruction. IEEE Trans. PAMI 13 (1991) 401-412.
- [17] D. Geiger and A. YuilleA common framework for image segmentation. Internat J. Comput. Vision 6 (1991) 227-243.
- [18] D. Geman and G. ReynoldsConstrained image restoration and the recovery of discontinuities. IEEE Trans. PAMI 3 (1992) 367-383.
- [19] S. Geman and D. Geman. Stochatic relaxation, Gibbs distributions, and the Bayesian restoration of image. IEEE Trans. PAMI 6 (1984). Zbl0573.62030
- [20] E. Giusti. Minimal surfaces and functions of bounded variation. Birkhäuser, Boston (1984). Zbl0545.49018MR775682
- [21] M. Gobbino. Finite difference approximation of the Mumford-Shah functional.Comm. Pure Appl. Math. 51 (1998) 197-228. Zbl0888.49013MR1488299
- [22] D. Mumford and J. Shah. Optimal approximation by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42 (1989) 577-685. Zbl0691.49036MR997568
- [23] C. R. Vogel and M. E. Oman. Iterative methods for total variation denoismg, in Procedings of the Colorado Conference on Iterative Methods (1994). Zbl0847.65083
- [24] W. P. Ziemer. Weakly Differentiable Functions. Springer-Verlag, Berlin (1989). Zbl0692.46022MR1014685
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.