Finite-difference approximation of energies in fracture mechanics

Roberto Alicandro; Matteo Focardi; Maria Stella Gelli

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2000)

  • Volume: 29, Issue: 3, page 671-709
  • ISSN: 0391-173X

How to cite

top

Alicandro, Roberto, Focardi, Matteo, and Gelli, Maria Stella. "Finite-difference approximation of energies in fracture mechanics." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 29.3 (2000): 671-709. <http://eudml.org/doc/84423>.

@article{Alicandro2000,
author = {Alicandro, Roberto, Focardi, Matteo, Gelli, Maria Stella},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {energy functionals; discrete and continuous approximation; variational approximation},
language = {eng},
number = {3},
pages = {671-709},
publisher = {Scuola normale superiore},
title = {Finite-difference approximation of energies in fracture mechanics},
url = {http://eudml.org/doc/84423},
volume = {29},
year = {2000},
}

TY - JOUR
AU - Alicandro, Roberto
AU - Focardi, Matteo
AU - Gelli, Maria Stella
TI - Finite-difference approximation of energies in fracture mechanics
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2000
PB - Scuola normale superiore
VL - 29
IS - 3
SP - 671
EP - 709
LA - eng
KW - energy functionals; discrete and continuous approximation; variational approximation
UR - http://eudml.org/doc/84423
ER -

References

top
  1. [1] R. Alicandro - A. Braides - M.S. Gelli, Free-discontinuity problems generated by singular perturbation, Proc. Roy. Soc. Edinburgh128A (1998), 1115-1129. Zbl0920.49007MR1664085
  2. [2] R. Alicandro - M.S. Gelli, Free discontinuity problems generated by singular perturbation : the n-dimensional case, Proc. Roy. Soc. Edinburgh, to appear. Zbl0978.49014MR1769236
  3. [3] R. Alicandro - A. Braides - J. Shah, Free-discontinuity problems via functionals involving the L1-norm of the gradient and their approximations, Interfaces and Free Boundaries1 (1999), 17-37. Zbl0947.49011MR1865104
  4. [4] L. Ambrosio, A compactness theorem for a new class of functions of bounded variation, Boll. Un. Mat. Ital. 3-B (1989), 857-881. Zbl0767.49001MR1032614
  5. [5] L. Ambrosio, Existence theory for a new class of variational problems, Arch. Rational Mech. Anal. 111 (1990), 291-322. Zbl0711.49064MR1068374
  6. [6] L. Ambrosio, A new proof of the SBV compactness theorem, Calc. Var. Partial Differential Equations3 (1995), 127-137. Zbl0837.49011MR1384840
  7. [7] L. Ambrosio - A. Braides, Energies in SBV and variational models in fracture mechanics, In: "Homogenization and Applications to Material Sciences", D. CIORANESCU - A. DAMLAMIAN - P. DONATO (eds.), GAKUTO, Gakkotosho, Tokio, Japan, 1997, pp. 1-22. Zbl0904.73045MR1473974
  8. [8] L. Ambrosio - A. Coscia - G. Dal Maso, Fine properties of functions with bounded deformation, Arch. Rational Mech. Anal.139 (1997), 201-238. Zbl0890.49019MR1480240
  9. [9] L. Ambrosio - N. Fusco - D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems", Oxford University Press, Oxford, 2000. Zbl0957.49001MR1857292
  10. [10] L. Ambrosio - V.M. Tortorelli, Approximation offunctionals depending on jumps by elliptic functionals via r-convergence, Comm. Pure Appl. Math.43 (1990), 999-1036. Zbl0722.49020MR1075076
  11. [11] L. Ambrosio - V.M. Tortorelli, On the approximation of free-discontinuity problems, Boll. Un. Mat. Ital.6-B (1992), 105-123. Zbl0776.49029MR1164940
  12. [12] G. Bellettini - A. Coscia - G. Dal Maso, Compactness and lower semicontinuity in SBD (Ω), Math. Z.228 (1998), 337-351. Zbl0914.46007
  13. [13] M. Born - K. Huang, "Dynamical Theory of Crystal Lattices", Oxford University Press, Oxford, 1954. Zbl0057.44601
  14. [14] A. Braides, "Approximation of Free-Discontinuity Problems", Lecture Notes in Mathematics, Springer Verlag, Berlin, 1998. Zbl0909.49001MR1651773
  15. [15] A. Braides, Non-local variational limits of discrete systems, Preprint SISSA, Trieste, 1999. MR1759792
  16. [16] A. Braides - G. Dal Maso, Non-local approximation of the Mumford-Shah functional, Calc. Var. Partial Differential Equations5 (1997), 293-322. Zbl0873.49009MR1450713
  17. [17] A. Braides - G. Dal Maso - A. Garroni, Variational formulation of softening phenomena in fracture mechanics: the one-dimensional case, Arch. Rational Mech. Anal.146 (1999), 23-58. Zbl0945.74006MR1682660
  18. [18] A. Braides - A. Defranceschi, "Homogenization of Multiple Integral", Oxford University Press, Oxford, 1998. Zbl0911.49010MR1684713
  19. [19] A. Braides - M.S. Gelli, Limits of discrete systems with long-range interactions, Preprint SISSA, Trieste, 1999. Zbl1031.49022MR1970562
  20. [20] A. Braides - M.S. Gelli, Limits of discrete systems without convexity hypotheses, Math. Mech. Solids, to appear. Zbl1024.74004MR1900933
  21. [21] M. Buliga, Energy minimizing brittle crack propagation, J. Elasticity52 (1999), 201-238. Zbl0947.74055MR1700752
  22. [22] A. Chambolle, Finite differences discretizations of the Mumford-Shah functional, RAIRO-Model. Math. Anal. Numer., to appear. Zbl0947.65076MR1700035
  23. [23] G. Dal Maso, "An Introduction to r-convergence", Birkhäuser, Boston, 1993. Zbl0816.49001MR1201152
  24. [24] E. De Giorgi - L. Ambrosio, Un nuovo funzionale del calcolo delle variazioni, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 82 (1988), 199-210. Zbl0715.49014MR1152641
  25. [25] E. De Giorgi - T. Franzoni, Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975), 842-850. Zbl0339.49005MR448194
  26. [26] L.C. Evans - R.F. Gariepy, "Measure Theory and Fine Properties of Functions", CRC Press, Boca Raton, 1992. Zbl0804.28001MR1158660
  27. [27] H. Federer, "Geometric Measure Theory", Springer Verlag, New York, 1969. Zbl0176.00801MR257325
  28. [28] M. Focardi, On the variational approximation of free-discontinuity problems in the vectorial case, Math. Models Methods Appl. Sci., to appear. Zbl1010.49010MR1832998
  29. [29] G.A. Francfort - J.J. Marigo, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids46 No. 8 (1998), 1319-1342. Zbl0966.74060MR1633984
  30. [30] E. Giusti, "Minimal Surfaces and Functions with bounded Variation", Birkhäuser, Basel, 1993. Zbl0545.49018MR775682
  31. [31] M. Gobbino, Finite difference approximation of the Mumford-Shah functional, Comm. Pure Appl. Math51 (1998), 197-228. Zbl0888.49013MR1488299
  32. [32] M. Gobbino - M.G. Mora, Finite difference approximation offree discontinuity problems, Preprint SISSA, Trieste, 1999. MR1838502
  33. [33] A.A. Griffith, The phenomenon of rupture and flow in solids, Phil Trans. Royal Soc. London A221 (1920), 163-198. 
  34. [34] D. Mumford - J. Shah, Optimal approximation by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math. 17 (1989), 577-685. Zbl0691.49036MR997568
  35. [35] R. Temam, "Mathematical Problems in Plasticity", Bordas, Paris, 1985. Zbl0457.73017
  36. [36] L. Truskinovsky, Fracture as a phase transition, In: "Contemporary research in the mechanics and mathematics of materials ", R.C. BATRA - M. F. BEATTY (eds.), CIMNE, Barcelona, 1996, pp. 322-332. 
  37. [37] W. Ziemer, "Weakly Differentiable Functions", Springer, Berlin, 1989. Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.