Finite-difference approximation of energies in fracture mechanics
Roberto Alicandro; Matteo Focardi; Maria Stella Gelli
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2000)
- Volume: 29, Issue: 3, page 671-709
- ISSN: 0391-173X
Access Full Article
topHow to cite
topAlicandro, Roberto, Focardi, Matteo, and Gelli, Maria Stella. "Finite-difference approximation of energies in fracture mechanics." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 29.3 (2000): 671-709. <http://eudml.org/doc/84423>.
@article{Alicandro2000,
author = {Alicandro, Roberto, Focardi, Matteo, Gelli, Maria Stella},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {energy functionals; discrete and continuous approximation; variational approximation},
language = {eng},
number = {3},
pages = {671-709},
publisher = {Scuola normale superiore},
title = {Finite-difference approximation of energies in fracture mechanics},
url = {http://eudml.org/doc/84423},
volume = {29},
year = {2000},
}
TY - JOUR
AU - Alicandro, Roberto
AU - Focardi, Matteo
AU - Gelli, Maria Stella
TI - Finite-difference approximation of energies in fracture mechanics
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2000
PB - Scuola normale superiore
VL - 29
IS - 3
SP - 671
EP - 709
LA - eng
KW - energy functionals; discrete and continuous approximation; variational approximation
UR - http://eudml.org/doc/84423
ER -
References
top- [1] R. Alicandro - A. Braides - M.S. Gelli, Free-discontinuity problems generated by singular perturbation, Proc. Roy. Soc. Edinburgh128A (1998), 1115-1129. Zbl0920.49007MR1664085
- [2] R. Alicandro - M.S. Gelli, Free discontinuity problems generated by singular perturbation : the n-dimensional case, Proc. Roy. Soc. Edinburgh, to appear. Zbl0978.49014MR1769236
- [3] R. Alicandro - A. Braides - J. Shah, Free-discontinuity problems via functionals involving the L1-norm of the gradient and their approximations, Interfaces and Free Boundaries1 (1999), 17-37. Zbl0947.49011MR1865104
- [4] L. Ambrosio, A compactness theorem for a new class of functions of bounded variation, Boll. Un. Mat. Ital. 3-B (1989), 857-881. Zbl0767.49001MR1032614
- [5] L. Ambrosio, Existence theory for a new class of variational problems, Arch. Rational Mech. Anal. 111 (1990), 291-322. Zbl0711.49064MR1068374
- [6] L. Ambrosio, A new proof of the SBV compactness theorem, Calc. Var. Partial Differential Equations3 (1995), 127-137. Zbl0837.49011MR1384840
- [7] L. Ambrosio - A. Braides, Energies in SBV and variational models in fracture mechanics, In: "Homogenization and Applications to Material Sciences", D. CIORANESCU - A. DAMLAMIAN - P. DONATO (eds.), GAKUTO, Gakkotosho, Tokio, Japan, 1997, pp. 1-22. Zbl0904.73045MR1473974
- [8] L. Ambrosio - A. Coscia - G. Dal Maso, Fine properties of functions with bounded deformation, Arch. Rational Mech. Anal.139 (1997), 201-238. Zbl0890.49019MR1480240
- [9] L. Ambrosio - N. Fusco - D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems", Oxford University Press, Oxford, 2000. Zbl0957.49001MR1857292
- [10] L. Ambrosio - V.M. Tortorelli, Approximation offunctionals depending on jumps by elliptic functionals via r-convergence, Comm. Pure Appl. Math.43 (1990), 999-1036. Zbl0722.49020MR1075076
- [11] L. Ambrosio - V.M. Tortorelli, On the approximation of free-discontinuity problems, Boll. Un. Mat. Ital.6-B (1992), 105-123. Zbl0776.49029MR1164940
- [12] G. Bellettini - A. Coscia - G. Dal Maso, Compactness and lower semicontinuity in SBD (Ω), Math. Z.228 (1998), 337-351. Zbl0914.46007
- [13] M. Born - K. Huang, "Dynamical Theory of Crystal Lattices", Oxford University Press, Oxford, 1954. Zbl0057.44601
- [14] A. Braides, "Approximation of Free-Discontinuity Problems", Lecture Notes in Mathematics, Springer Verlag, Berlin, 1998. Zbl0909.49001MR1651773
- [15] A. Braides, Non-local variational limits of discrete systems, Preprint SISSA, Trieste, 1999. MR1759792
- [16] A. Braides - G. Dal Maso, Non-local approximation of the Mumford-Shah functional, Calc. Var. Partial Differential Equations5 (1997), 293-322. Zbl0873.49009MR1450713
- [17] A. Braides - G. Dal Maso - A. Garroni, Variational formulation of softening phenomena in fracture mechanics: the one-dimensional case, Arch. Rational Mech. Anal.146 (1999), 23-58. Zbl0945.74006MR1682660
- [18] A. Braides - A. Defranceschi, "Homogenization of Multiple Integral", Oxford University Press, Oxford, 1998. Zbl0911.49010MR1684713
- [19] A. Braides - M.S. Gelli, Limits of discrete systems with long-range interactions, Preprint SISSA, Trieste, 1999. Zbl1031.49022MR1970562
- [20] A. Braides - M.S. Gelli, Limits of discrete systems without convexity hypotheses, Math. Mech. Solids, to appear. Zbl1024.74004MR1900933
- [21] M. Buliga, Energy minimizing brittle crack propagation, J. Elasticity52 (1999), 201-238. Zbl0947.74055MR1700752
- [22] A. Chambolle, Finite differences discretizations of the Mumford-Shah functional, RAIRO-Model. Math. Anal. Numer., to appear. Zbl0947.65076MR1700035
- [23] G. Dal Maso, "An Introduction to r-convergence", Birkhäuser, Boston, 1993. Zbl0816.49001MR1201152
- [24] E. De Giorgi - L. Ambrosio, Un nuovo funzionale del calcolo delle variazioni, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 82 (1988), 199-210. Zbl0715.49014MR1152641
- [25] E. De Giorgi - T. Franzoni, Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975), 842-850. Zbl0339.49005MR448194
- [26] L.C. Evans - R.F. Gariepy, "Measure Theory and Fine Properties of Functions", CRC Press, Boca Raton, 1992. Zbl0804.28001MR1158660
- [27] H. Federer, "Geometric Measure Theory", Springer Verlag, New York, 1969. Zbl0176.00801MR257325
- [28] M. Focardi, On the variational approximation of free-discontinuity problems in the vectorial case, Math. Models Methods Appl. Sci., to appear. Zbl1010.49010MR1832998
- [29] G.A. Francfort - J.J. Marigo, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids46 No. 8 (1998), 1319-1342. Zbl0966.74060MR1633984
- [30] E. Giusti, "Minimal Surfaces and Functions with bounded Variation", Birkhäuser, Basel, 1993. Zbl0545.49018MR775682
- [31] M. Gobbino, Finite difference approximation of the Mumford-Shah functional, Comm. Pure Appl. Math51 (1998), 197-228. Zbl0888.49013MR1488299
- [32] M. Gobbino - M.G. Mora, Finite difference approximation offree discontinuity problems, Preprint SISSA, Trieste, 1999. MR1838502
- [33] A.A. Griffith, The phenomenon of rupture and flow in solids, Phil Trans. Royal Soc. London A221 (1920), 163-198.
- [34] D. Mumford - J. Shah, Optimal approximation by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math. 17 (1989), 577-685. Zbl0691.49036MR997568
- [35] R. Temam, "Mathematical Problems in Plasticity", Bordas, Paris, 1985. Zbl0457.73017
- [36] L. Truskinovsky, Fracture as a phase transition, In: "Contemporary research in the mechanics and mathematics of materials ", R.C. BATRA - M. F. BEATTY (eds.), CIMNE, Barcelona, 1996, pp. 322-332.
- [37] W. Ziemer, "Weakly Differentiable Functions", Springer, Berlin, 1989. Zbl0692.46022MR1014685
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.