Finite element analysis of sloshing and hydroelastic vibrations under gravity
Alfredo Bermúdez; Rodolfo Rodríguez
- Volume: 33, Issue: 2, page 305-327
- ISSN: 0764-583X
Access Full Article
topHow to cite
topBermúdez, Alfredo, and Rodríguez, Rodolfo. "Finite element analysis of sloshing and hydroelastic vibrations under gravity." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.2 (1999): 305-327. <http://eudml.org/doc/193922>.
@article{Bermúdez1999,
author = {Bermúdez, Alfredo, Rodríguez, Rodolfo},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {gravity effects; spurious modes; finite element method; fluid-structure interaction problems; harmonic hydroelastic vibrations; displacement formulation; well-posed mixed linear eigenvalue problem; triangular Raviart-Thomas elements; piecewise linear elements; fluid-solid interface; non-conforming discretization; convergence; optimal error estimates},
language = {eng},
number = {2},
pages = {305-327},
publisher = {Dunod},
title = {Finite element analysis of sloshing and hydroelastic vibrations under gravity},
url = {http://eudml.org/doc/193922},
volume = {33},
year = {1999},
}
TY - JOUR
AU - Bermúdez, Alfredo
AU - Rodríguez, Rodolfo
TI - Finite element analysis of sloshing and hydroelastic vibrations under gravity
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 2
SP - 305
EP - 327
LA - eng
KW - gravity effects; spurious modes; finite element method; fluid-structure interaction problems; harmonic hydroelastic vibrations; displacement formulation; well-posed mixed linear eigenvalue problem; triangular Raviart-Thomas elements; piecewise linear elements; fluid-solid interface; non-conforming discretization; convergence; optimal error estimates
UR - http://eudml.org/doc/193922
ER -
References
top- [1] I. Babusška and J. Osborn, Eigenvalue problems, in Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet and J.L. Lions Eds., North Holland, Amsterdam (1991). Zbl0875.65087MR1115240
- [2] H. Berger, J. Boujot and R. Ohayon, On a spectral problem in vibration mechanics: computation of elastic tanks partially filled with liquids. J. Math. Anal. Appl. 51 (1975) 272-298. Zbl0311.73053MR386456
- [3] A. Bermúdez, R. Durán, M.A. Muschietti, R. Rodriguez and J. Solomin, Finite element vibration analysis of fluid-solid Systemswithout spurious modes. SIAM J. Numer. Anal 32 (1995) 1280-1295. Zbl0833.73050MR1342293
- [4] A. Bermúdez, R. Durán and R. Rodriguez, Finite element analysis of compressible and incompressible fluid-solid Systems. Math. Comp. 67 (1998) 111-136. Zbl0898.73060MR1434937
- [5] A. Bermúdez and R. Rodríguez, Finite element computation of the vibration modes of a fluid-solid system. Comp. Methods Appl. Mech. Eng. 119 (1994) 355-370. Zbl0851.73053MR1316022
- [6] J. Boujot, Sur l'analyse des caractéristiques vibratoirs d'un liquide contenu dans un reservoir. J. Mécanique 11 (1972) 647-671. Zbl0251.76013MR388971
- [7] J. Boujot, Mathematical formulation of fluid-structure interaction problems. RAIRO Modél. Math. Anal. Numér. 21 (1987) 239-260. Zbl0617.73052MR896242
- [8] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). Zbl0788.73002MR1115205
- [9] P. Clement, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77-84. Zbl0368.65008MR400739
- [10] C. Conca, J. Planchard and M. Vanninathan, Fluids and Periodic Structures. Masson, Paris (1992). Zbl0910.76002
- [11] J. Descloux, N. Nassif and J. Rappaz, On spectral approximation. Part I: The problem of convergence. Part 2: Error estimates for the Galerkin methods. RAIRO Anal. Numér. 12 (1978) 97-119. Zbl0393.65024MR483400
- [12] V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo (1986). Zbl0585.65077MR851383
- [13] P. Grisvard, Elliptic Problems for Non-smooth Domains. Pitman, Boston (1985). Zbl0695.35060
- [14] T. Kato, Perturbation Theory for Linear Operators. Springer Verlag, Berlin (1966). Zbl0148.12601MR203473
- [15] M. Hamdi, Y. Ouset and G. Verchery, A displacement method for the analysis of vibrations of coupled fluid-structure Systems, Internat. J. Numer. Methods Eng. 13 (1978) 139-150. Zbl0384.76060
- [16] J. Mandel, Cours de Mécanique des Milieux Continus. Gauthier-Villars, Paris (1966). Zbl0903.76001
- [17] H.J-P. Morand and R. Ohayon, Interactions Fluides-Structures, Recherches en Mathématiques Appliquées. Masson, Paris 23 (1992). Zbl0754.73071MR1180076
- [18] R. Rodríguez and J. Solomin, The order of convergence of eigenfrequencies in finite element approximations of fluid-structure interaction problems. Math. Comp. 65 (1996) 1463-1475. Zbl0853.65111MR1344621
- [19] R.M.S.M. Schulkes, Interactions of an elastic solid with a viscous fluid: eigenmode analysis. J. Comput. Phys.100 (1992) 270-283. Zbl0757.76028MR1167745
- [20] P.A. Raviart and J.M. Thomas, A mixed finite element method for second order elliptic problems, in Mathematical Aspects of Finite Element Methods, Lecture Notes in Mathematics. Springer Verlag, Berlin, Heidelberg, New York 606 (1977) 292-315. Zbl0362.65089MR483555
- [21] P. Tong, Liquid sloshing in an elastic container. AFOSR 66-0943, California Institute of Technology, Pasadena, CA (1966).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.