On the linear force-free fields in bounded and unbounded three-dimensional domains

Tahar-Zamène Boulmezaoud; Yvon Maday; Tahar Amari

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1999)

  • Volume: 33, Issue: 2, page 359-393
  • ISSN: 0764-583X

How to cite

top

Boulmezaoud, Tahar-Zamène, Maday, Yvon, and Amari, Tahar. "On the linear force-free fields in bounded and unbounded three-dimensional domains." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.2 (1999): 359-393. <http://eudml.org/doc/193925>.

@article{Boulmezaoud1999,
author = {Boulmezaoud, Tahar-Zamène, Maday, Yvon, Amari, Tahar},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {helicity; Fredholm type solution theory; existence and uniqueness},
language = {eng},
number = {2},
pages = {359-393},
publisher = {Dunod},
title = {On the linear force-free fields in bounded and unbounded three-dimensional domains},
url = {http://eudml.org/doc/193925},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Boulmezaoud, Tahar-Zamène
AU - Maday, Yvon
AU - Amari, Tahar
TI - On the linear force-free fields in bounded and unbounded three-dimensional domains
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 2
SP - 359
EP - 393
LA - eng
KW - helicity; Fredholm type solution theory; existence and uniqueness
UR - http://eudml.org/doc/193925
ER -

References

top
  1. [1] S. Agmon, On the eigenfuntions and on the eigenvalnes of general elliptic boundary value problems. Comm. Pure Appl. Math.15 (1962) 119-147. Zbl0109.32701MR147774
  2. [2] C. E. Allissandrakis, On the computation of constant α force-free fields. Astron. Astrophys. 100 (1981) 197-200. 
  3. [3] J. J. Aly, A model for magnetic storage and Taylor's relaxation in the solar corona: I. Helicity-constrained minimum energy state in a half-cylinder, Phys. Fluids B 5 (1993) 151-163. MR1197524
  4. [4] J. J. Aly, On some properties of force-free magnetic fields in infinite regions of space. Astrophys. J. 283 (1984) 349-362. 
  5. [5] T. Amari, J.J. Aly, J.F. Luciani, T. Z. Boulmezaoud and Z. Mikic, Reconstructing the solar coronal magnetic field as a force free magnetic field. Solar Physics 174 (1997) 129-149. 
  6. [6] P. R. Baldwin and G. M. Townsend, Complex Trkalian fields and solutions to Euler's Equations for ideal fiuid. Phys. Rev. E 51 (1995) 2059-2068. MR1385435
  7. [7] F. Beltrami, Considerazioni idrodinamiche. Rend. Reale Ist. Lombardo 22 (1889) 121-130. JFM21.0948.04
  8. [8] M. A. Berger and G. B. Field, The topological properties of magnetic helicity. J. Fluid Mech. 147 (1984) 133-148. MR770136
  9. [9] O. Bjorgum, On Beltrami vector fields and flows, Part I, Univ. Bergen Årbok, Naturv. rekke. No. 1 (1951). MR59685
  10. [10] O. Bjorgum, On Beltrami vector fields and flows, Part II, Univ. Bergen Årbok, Naturv. rekke. No. 13 (1952). MR97228
  11. [11] T. Z. Boulmezaoud, On the linear force-free fields in a bounded domain and in a half-cylinder of R3. C. R. Acad. Sci. 325 (1997) 1235-1240. Zbl0895.35019MR1490131
  12. [12] T. Z. Boulmezaoud, Y. Maday and T. Amari, On the existence of non-linear force-free fields in a bounded domain. SIAM J. Appl. Math. (submitted). Zbl0954.35043
  13. [13] T. Z. Boulmezaoud, Étude des champs de Beltrami dans des domaines de R3 bornés et non-bornés et applications en astro-physique. Ph.D. thesis, Laboratoire d'Analyse Numérique, University of Pierre et Marie Curie, France (1998). 
  14. [14] S. Chandrasekhar and P. C. Kendal, On Force-free magnetic fields. Astrophys. J. 126 (1957) 457-460. MR88988
  15. [15] P. Constantin and A. Majda, The Beltrami Spectrum for incompressible fluid flows. Comm. Math. Phys. 115 (1988) 435-456. Zbl0669.76049MR931670
  16. [16] R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique, Tome 5. Masson, Paris (1988). Zbl0652.45001
  17. [17] P. Démoulin, E. R. Priest and U. Anzer, A three-dimensional model for solar prominences. Astron. Astrophys. 221 (1989)326-337. 
  18. [18] J.-M. Dominguez, Étude des équations de la Magnétohydrodynamique stationnaires et leur approximation par élements finis, thèse de Docteur Ingénieur. University of Pierre et Marie Curie, France (1982). 
  19. [19] D. Dritshel, Generalized helical Beltrami flows in hydrodynamics and magnetohydrodynamics. J. Fluid Mech. 222 (1991) 525-541. Zbl0724.76090MR1090722
  20. [20] G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en physique. Dunod, Paris (1972). Zbl0298.73001MR464857
  21. [21] C. J. Durant, Linear Force-free fields and coronal models. Aust. J. Phys. 42 (1989) 317-329. 
  22. [22] C. Foias and R. Temam, Remarques sur les équations de Navier-Stockes et phénomènes successifs de bifurcation, Ann. Sc. Norm. Sup. Pisa. S. 4 5 (1978) 29-63. Zbl0384.35047MR481645
  23. (23] K. O. Friedrichs, Differential forms on Reimannian manifolds. Comm. Pure Appl. Math. 8 (1955) 551-590. Zbl0066.07504MR87763
  24. [24] H. P. Furth, S. C. Jardin and D. B. Montgomery, Force-free Coil principles Applied to High-Temperature Superconducting Materials. IEEE Trans. Magnet. 24 (1998) 1467-1468. 
  25. [25] V. Girault and P. A. Raviart, Finite element methods for Navier-Stokes equations. Springer-Verlag (1986). Zbl0585.65077MR851383
  26. [26] J. Gobert, Sur une inégalité de coercivité. J. Math. Anal. Appl. 36 (1971) 518-528. Zbl0221.35016MR289930
  27. [27] H. Grad and H. Rubin, Hydromagnetic equilibria and force force free fields, in Proc. 2nd Intern. Conf. on Peaceful Uses of Atomic Energy, Geneva, United Nations 31 (1958) 190-197. 
  28. [28] N. M. Günter, Potential Theory. Ungar Ed. (1967). 
  29. [29] T. H. Jensen and M. S. ChuCurrent drive and helicity injection, Phys. Fluids 27 (1994) 2881-2885. Zbl0553.76100
  30. [30] R. Kress, Ein Neumannsches Randwertproblem ber kraftfreien Feldern. Mech. Verf. Math. Phys. 7 (1972) 81-97. Zbl0256.31007MR396981
  31. [31] R. Kress, The treatment of a Neumann boundary value problem for force-free fields by an integral equation method. Proceedings of the Royal Society of Edimburgh 82 (1978) 71-86. Zbl0397.35063MR524673
  32. [32] R. Kress, A remark on a boundary value problem for force-free fields. J. Appl. Math. Phys. 28 (1977) 715-722. Zbl0376.35005MR609880
  33. [33] P. Laurence and M. Avellaneda, On Woltjer's variational principle for force-free fields. J. Math. Phys. 32 (1991) 1240-1253. Zbl0850.76853MR1103476
  34. [34] F. Marqués, On boundary conditions for velocity potentials in confined flows, application to couette flow. Phys. Fluids. A 2 (1990) 729-737. Zbl0703.76028MR1050010
  35. [35] G. E. Marsh, Magnetic energy, multiply connected domains and force free fields. Phys. Rev. A 46 (1992) 2117-2123. MR1178637
  36. [36] G. E. Marsh, Helicity, topology and Force-free fields. Phys. Rev. E. 47(1992)3607-3611. MR1377900
  37. [37] H. K. Moffatt, The degree of knottedness of tangled vortes lines. J. Fluid. Mech 35 (1969) 117-129. Zbl0159.57903
  38. [38] D. McLaughlin and O. Pironneau, Some notes on penodic Beltrami fields in Cartesian geometry. J. Math. Phys. 32 (1991)797-804. Zbl0850.76027MR1093825
  39. [39] H. E. Moses, Eigenfunctions of the curl operator, rotationally invariant Helmoltz theorem, and applications to electromagnetic theory and fluid mechanics. SIAM J. Appl. Math. 21 (1971) 114-144. Zbl0219.76029MR286363
  40. [40] C. Nedelec, Équations intégrales. Cours de D. E. A. d'Analyse Numérique, University of Pierre et Marie Curie, France (1995). 
  41. [41] R. Picard, Ein Randwertproblem in der Theorie kraftfreier Magnetfelfer. Zeit. Angew. Math. Phys. 27 (1976) 196-180. Zbl0337.35060MR424017
  42. [42] E. R. Priest, Solar Magnetohydrodynamics. Reidel, Dordrecht (1982). 
  43. [43] T. Sakurai, Computational modelmg of magnetic fields in solar active regions. Space Sci. Rev. 51 (1989) 11-48. 
  44. [44] N. Seehafer, Determination of constant α force-free fields from magnetograph data. Solar Phys. 58 (1978) 215-223. 
  45. [45] V. D. Shafranov, On magnetohydrodynamical Equilibrium configurations. Soviet. Phys. JETP 6 (1958) 545-554. Zbl0081.21801MR93282
  46. [46] J. B. Taylor, Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys. Rev. Lett. 33 (1974) 1139-1141. 
  47. [47] J. B. Taylor, Relaxation of magnetic reconnection in plasmas. Rev. Mod. Phys. 58 (1986) 741-763. 
  48. [48] Z. Yoshida and Y. Giga, Remarks on spectra of operator Rot. Math. Z. 204 (1990) 235-245. Zbl0676.47012MR1055988
  49. [49] C. Y. Wang, Exact solutions of the steady-state Navier-Stokes equations. Annu. Rev. Fluid Mech. 23 (1991)159-177. Zbl0717.76033
  50. [50] L. Woltjer, Proc.Nat. Acad. Sci. 44 (1958) 489. Zbl0081.21703

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.