Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem

Yves Coudière; Jean-Paul Vila; Philippe Villedieu

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1999)

  • Volume: 33, Issue: 3, page 493-516
  • ISSN: 0764-583X

How to cite

top

Coudière, Yves, Vila, Jean-Paul, and Villedieu, Philippe. "Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.3 (1999): 493-516. <http://eudml.org/doc/193932>.

@article{Coudière1999,
author = {Coudière, Yves, Vila, Jean-Paul, Villedieu, Philippe},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite volume schemes; linear convection-diffusion problem; convergence; unstructured meshes; upwind scheme; diamond cell method; error estimate},
language = {eng},
number = {3},
pages = {493-516},
publisher = {Dunod},
title = {Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem},
url = {http://eudml.org/doc/193932},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Coudière, Yves
AU - Vila, Jean-Paul
AU - Villedieu, Philippe
TI - Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 3
SP - 493
EP - 516
LA - eng
KW - finite volume schemes; linear convection-diffusion problem; convergence; unstructured meshes; upwind scheme; diamond cell method; error estimate
UR - http://eudml.org/doc/193932
ER -

References

top
  1. [1] R. A. Adams, Sobolev Spaces. Academic Press, New-York (1975). Zbl0314.46030MR450957
  2. [2] M. Aftosmis, D. Gaitonde and T. Sean Tavares, On the accuracy, stability and monotonicity of various reconstruction algorithms for unstructured meshes. AIAA paper No. 94-0415 (1994). 
  3. [3] J. Baranger, J. F. Maitre and F. Oudin, Connection between finite volume and mixed finite element methods. RAIRO Modél. Math. Anal. Num. 30 (1996) 445-465. Zbl0857.65116MR1399499
  4. [4] W. J. Coirier, An Adaptatively-Refined, Cartesian, Cell-based Scheme for the Euler and Navier-Stokes Equations. Ph. D. thesis, Michigan University, NASA Lewis Research Center, USA (1994). 
  5. [5] W. J. Coirier and K. G. Powell, A Cartesian, cell-based approach for adaptative-refined solutions of the Euler and Navier-Stokes equations. AIAA (1995). 
  6. [6] Y. Coudière, Analyse de schémas volumes finis sur maillages non structurés pour des problèmes linéaires hyperboliques et elliptiques. Ph. D. thesis, Paul Sabatier University, France (1998). 
  7. [7] M. Dauge, Elliptic Boundary Value Problems in Corner Domains. Lect. Notes Math. 1341, Springer Verlag, Berlin-New York (1988). Zbl0668.35001MR961439
  8. [8] F. Dubois, Interpolation de Lagrange et volumes finis. Une technique nouvelle pour calculer le gradient d'une fonction sur les faces d'un maillage non structuré. Technical report, Aérospatiale (1992). 
  9. [9] I. Faille, A control volume method to solve an elliptic equation on a 2d irregular meshing. Comput. Methods. Appl. Mech. Engrg. 100 (1992) 275-290. Zbl0761.76068MR1187634
  10. [10] T. Gallouët, An introduction to finite volume methods. Technical report, Cours CEA/EDF/INRIA (1992). 
  11. [11] W. Guo and M. Stynes, An analysis of a cell-vertex finite volume method for a parabohe convection-diffusion problem. Math. Comp. 66 (1997) 105-124. Zbl0854.65082MR1372006
  12. [12] R. Herbin, An error estimate for a finite volume scheme for a diffusion-convection problem on a triangular mesh. Numerical Method for Partial Differential Equations 11 (1994) 165-173. Zbl0822.65085MR1316144
  13. [13] R. Herbin, Finite volume methods for diffusion convection equations on general meshes, in Finite Volumes for Complex Applications, Hermès (1996) 153-160. 
  14. [14] F. Jacon and D. Knight, A Navier-Stokes algorithm for turbulent flows using an unstructured grid and flux difference splitting. AIAA paper No. 94-2292 (1994). 
  15. [15] C.R. Mitchell and R.W. Walters, K-exect reconstruction for the Navier-Stokes equations on arbitrary grids. AIAA (1993). 
  16. [16] K.W. Morton and E. Süli, Finite volume methods and their analysis. IMA J. Numer. Anal. 11 (1991) 241-260. Zbl0729.65087MR1105229
  17. [17] E. Süli, Convergence of finite volume schemes for Poisson's equation on nonuniform meshes. SIAM J. Numer. Anal. 28 (1991) 1419-1430. Zbl0802.65104MR1119276
  18. [18] J.-M. Thomas and D. Trujillo, Analysis of finite volumes methods. Technical Report 95/19, CNRS, URA 1204 (1995). 
  19. [19] J.-M. Thomas and D. Trujillo, Convergence of finite volumes methods. Technical Report 95/20, CNRS, URA 1204 (1995). 
  20. [20] D. Trujillo, Couplage espace-temps de schémas numériques en simulation de réservoir. Ph.D. thesis, University of Pau et pays de l'Adour (1994). 
  21. [21] S. Verdière and M.H. Vignal, Numerical and theoretical study of a dual mesh method using finite volume schemes for two phase flow problems in porous media. Numer. Math. 80 (1998) 601-639. Zbl0912.76063MR1650047
  22. [22] P. Villedieu, Une méthode de volumes finis sur maillages non-structurés quelconques pour l'équation de convection diffusion. Technical Report 1-3550.00-DERI, ONERA (1996). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.