Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem
Yves Coudière; Jean-Paul Vila; Philippe Villedieu
- Volume: 33, Issue: 3, page 493-516
- ISSN: 0764-583X
Access Full Article
topHow to cite
topCoudière, Yves, Vila, Jean-Paul, and Villedieu, Philippe. "Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.3 (1999): 493-516. <http://eudml.org/doc/193932>.
@article{Coudière1999,
author = {Coudière, Yves, Vila, Jean-Paul, Villedieu, Philippe},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite volume schemes; linear convection-diffusion problem; convergence; unstructured meshes; upwind scheme; diamond cell method; error estimate},
language = {eng},
number = {3},
pages = {493-516},
publisher = {Dunod},
title = {Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem},
url = {http://eudml.org/doc/193932},
volume = {33},
year = {1999},
}
TY - JOUR
AU - Coudière, Yves
AU - Vila, Jean-Paul
AU - Villedieu, Philippe
TI - Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 3
SP - 493
EP - 516
LA - eng
KW - finite volume schemes; linear convection-diffusion problem; convergence; unstructured meshes; upwind scheme; diamond cell method; error estimate
UR - http://eudml.org/doc/193932
ER -
References
top- [1] R. A. Adams, Sobolev Spaces. Academic Press, New-York (1975). Zbl0314.46030MR450957
- [2] M. Aftosmis, D. Gaitonde and T. Sean Tavares, On the accuracy, stability and monotonicity of various reconstruction algorithms for unstructured meshes. AIAA paper No. 94-0415 (1994).
- [3] J. Baranger, J. F. Maitre and F. Oudin, Connection between finite volume and mixed finite element methods. RAIRO Modél. Math. Anal. Num. 30 (1996) 445-465. Zbl0857.65116MR1399499
- [4] W. J. Coirier, An Adaptatively-Refined, Cartesian, Cell-based Scheme for the Euler and Navier-Stokes Equations. Ph. D. thesis, Michigan University, NASA Lewis Research Center, USA (1994).
- [5] W. J. Coirier and K. G. Powell, A Cartesian, cell-based approach for adaptative-refined solutions of the Euler and Navier-Stokes equations. AIAA (1995).
- [6] Y. Coudière, Analyse de schémas volumes finis sur maillages non structurés pour des problèmes linéaires hyperboliques et elliptiques. Ph. D. thesis, Paul Sabatier University, France (1998).
- [7] M. Dauge, Elliptic Boundary Value Problems in Corner Domains. Lect. Notes Math. 1341, Springer Verlag, Berlin-New York (1988). Zbl0668.35001MR961439
- [8] F. Dubois, Interpolation de Lagrange et volumes finis. Une technique nouvelle pour calculer le gradient d'une fonction sur les faces d'un maillage non structuré. Technical report, Aérospatiale (1992).
- [9] I. Faille, A control volume method to solve an elliptic equation on a 2d irregular meshing. Comput. Methods. Appl. Mech. Engrg. 100 (1992) 275-290. Zbl0761.76068MR1187634
- [10] T. Gallouët, An introduction to finite volume methods. Technical report, Cours CEA/EDF/INRIA (1992).
- [11] W. Guo and M. Stynes, An analysis of a cell-vertex finite volume method for a parabohe convection-diffusion problem. Math. Comp. 66 (1997) 105-124. Zbl0854.65082MR1372006
- [12] R. Herbin, An error estimate for a finite volume scheme for a diffusion-convection problem on a triangular mesh. Numerical Method for Partial Differential Equations 11 (1994) 165-173. Zbl0822.65085MR1316144
- [13] R. Herbin, Finite volume methods for diffusion convection equations on general meshes, in Finite Volumes for Complex Applications, Hermès (1996) 153-160.
- [14] F. Jacon and D. Knight, A Navier-Stokes algorithm for turbulent flows using an unstructured grid and flux difference splitting. AIAA paper No. 94-2292 (1994).
- [15] C.R. Mitchell and R.W. Walters, K-exect reconstruction for the Navier-Stokes equations on arbitrary grids. AIAA (1993).
- [16] K.W. Morton and E. Süli, Finite volume methods and their analysis. IMA J. Numer. Anal. 11 (1991) 241-260. Zbl0729.65087MR1105229
- [17] E. Süli, Convergence of finite volume schemes for Poisson's equation on nonuniform meshes. SIAM J. Numer. Anal. 28 (1991) 1419-1430. Zbl0802.65104MR1119276
- [18] J.-M. Thomas and D. Trujillo, Analysis of finite volumes methods. Technical Report 95/19, CNRS, URA 1204 (1995).
- [19] J.-M. Thomas and D. Trujillo, Convergence of finite volumes methods. Technical Report 95/20, CNRS, URA 1204 (1995).
- [20] D. Trujillo, Couplage espace-temps de schémas numériques en simulation de réservoir. Ph.D. thesis, University of Pau et pays de l'Adour (1994).
- [21] S. Verdière and M.H. Vignal, Numerical and theoretical study of a dual mesh method using finite volume schemes for two phase flow problems in porous media. Numer. Math. 80 (1998) 601-639. Zbl0912.76063MR1650047
- [22] P. Villedieu, Une méthode de volumes finis sur maillages non-structurés quelconques pour l'équation de convection diffusion. Technical Report 1-3550.00-DERI, ONERA (1996).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.