Error estimates for some quasi-interpolation operators

Rüdiger Verfürth

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1999)

  • Volume: 33, Issue: 4, page 695-713
  • ISSN: 0764-583X

How to cite

top

Verfürth, Rüdiger. "Error estimates for some quasi-interpolation operators." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.4 (1999): 695-713. <http://eudml.org/doc/193941>.

@article{Verfürth1999,
author = {Verfürth, Rüdiger},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {error bounds; quasi-interpolation operators; Clément-operator; a posteriori error estimates; nodal interpolation operator},
language = {eng},
number = {4},
pages = {695-713},
publisher = {Dunod},
title = {Error estimates for some quasi-interpolation operators},
url = {http://eudml.org/doc/193941},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Verfürth, Rüdiger
TI - Error estimates for some quasi-interpolation operators
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 4
SP - 695
EP - 713
LA - eng
KW - error bounds; quasi-interpolation operators; Clément-operator; a posteriori error estimates; nodal interpolation operator
UR - http://eudml.org/doc/193941
ER -

References

top
  1. [1] Handbook of Mathematical Functions, M. Abramowitz and I.A. Stegun Eds., Dover Publ., New York (1965). 
  2. [2] R.A. Adams, Sobolev Spaces. Academic Press, NewYork (1975). Zbl0314.46030MR450957
  3. [3] L. Angermann, A posteriori Fehlerabschätzungen für Lösungen gestörter Operatorgleichungen. Habilitationsschrift, Universität Erlangen-Nürnberg (1994). 
  4. [4] J.H. Bramble and L.E. Payne, Bounds in the Neumann problem for second order uniformly elliptic operators. Pacific J. Math.12 (1962) 823-833. Zbl0111.09701MR146504
  5. [5] C. Carstensen and St. A. Punken, Constants in Clément-interpolation error and residual based a posteriori error estimates in finite element methods. Report 97-11, Universität Kiel (1997). Zbl0973.65091
  6. [6] Ph.G. Ciarlet, The Finite Element Method for Elliptic Problems. North Holland (1978). Zbl0383.65058MR520174
  7. [7] P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77-84. Zbl0368.65008MR400739
  8. [8] R.G. Durán, On polynomial approximation in Sobolev spaces. SIAM J. Numer. Anal. 20 (1983) 985-988. Zbl0523.41020MR714693
  9. [9] L.E. Payne and H.F. Weinberger, An optimal Poincaré-inequality for convex domains. Arch. Rational Mech. Anal. 5 (1960) 286-292. Zbl0099.08402MR117419
  10. [10] L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483-493. Zbl0696.65007MR1011446
  11. [11] R. Verfürth, A Review of a posteriori Error Estimation and adaptive Mesh-Refinement Techniques. Teubner-Wiley, Stuttgart (1996). Zbl0853.65108

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.