Error estimates for some quasi-interpolation operators
- Volume: 33, Issue: 4, page 695-713
- ISSN: 0764-583X
Access Full Article
topHow to cite
topVerfürth, Rüdiger. "Error estimates for some quasi-interpolation operators." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.4 (1999): 695-713. <http://eudml.org/doc/193941>.
@article{Verfürth1999,
author = {Verfürth, Rüdiger},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {error bounds; quasi-interpolation operators; Clément-operator; a posteriori error estimates; nodal interpolation operator},
language = {eng},
number = {4},
pages = {695-713},
publisher = {Dunod},
title = {Error estimates for some quasi-interpolation operators},
url = {http://eudml.org/doc/193941},
volume = {33},
year = {1999},
}
TY - JOUR
AU - Verfürth, Rüdiger
TI - Error estimates for some quasi-interpolation operators
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 4
SP - 695
EP - 713
LA - eng
KW - error bounds; quasi-interpolation operators; Clément-operator; a posteriori error estimates; nodal interpolation operator
UR - http://eudml.org/doc/193941
ER -
References
top- [1] Handbook of Mathematical Functions, M. Abramowitz and I.A. Stegun Eds., Dover Publ., New York (1965).
- [2] R.A. Adams, Sobolev Spaces. Academic Press, NewYork (1975). Zbl0314.46030MR450957
- [3] L. Angermann, A posteriori Fehlerabschätzungen für Lösungen gestörter Operatorgleichungen. Habilitationsschrift, Universität Erlangen-Nürnberg (1994).
- [4] J.H. Bramble and L.E. Payne, Bounds in the Neumann problem for second order uniformly elliptic operators. Pacific J. Math.12 (1962) 823-833. Zbl0111.09701MR146504
- [5] C. Carstensen and St. A. Punken, Constants in Clément-interpolation error and residual based a posteriori error estimates in finite element methods. Report 97-11, Universität Kiel (1997). Zbl0973.65091
- [6] Ph.G. Ciarlet, The Finite Element Method for Elliptic Problems. North Holland (1978). Zbl0383.65058MR520174
- [7] P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77-84. Zbl0368.65008MR400739
- [8] R.G. Durán, On polynomial approximation in Sobolev spaces. SIAM J. Numer. Anal. 20 (1983) 985-988. Zbl0523.41020MR714693
- [9] L.E. Payne and H.F. Weinberger, An optimal Poincaré-inequality for convex domains. Arch. Rational Mech. Anal. 5 (1960) 286-292. Zbl0099.08402MR117419
- [10] L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483-493. Zbl0696.65007MR1011446
- [11] R. Verfürth, A Review of a posteriori Error Estimation and adaptive Mesh-Refinement Techniques. Teubner-Wiley, Stuttgart (1996). Zbl0853.65108
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.