An adaptive finite element method for solving a double well problem describing crystalline microstructure

Andreas Prohl

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1999)

  • Volume: 33, Issue: 4, page 781-796
  • ISSN: 0764-583X

How to cite

top

Prohl, Andreas. "An adaptive finite element method for solving a double well problem describing crystalline microstructure." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.4 (1999): 781-796. <http://eudml.org/doc/193946>.

@article{Prohl1999,
author = {Prohl, Andreas},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {nonconvex energy functional; laminated microstructure; improved convergence; discontinuous ansatz functions; adaptivity criterion; height of interelement jumps},
language = {eng},
number = {4},
pages = {781-796},
publisher = {Dunod},
title = {An adaptive finite element method for solving a double well problem describing crystalline microstructure},
url = {http://eudml.org/doc/193946},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Prohl, Andreas
TI - An adaptive finite element method for solving a double well problem describing crystalline microstructure
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 4
SP - 781
EP - 796
LA - eng
KW - nonconvex energy functional; laminated microstructure; improved convergence; discontinuous ansatz functions; adaptivity criterion; height of interelement jumps
UR - http://eudml.org/doc/193946
ER -

References

top
  1. [1] R.E. Bank, PLTMG: A Software Package for Solving Elliptic Partial Differential Equations. User's Guide 6.0. SIAM Philadelphia (1990). Zbl0717.68001MR1052151
  2. [2] J. Ball and R. James, Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100 (1987) 13-52. Zbl0629.49020MR906132
  3. [3] J. Ball and R. James, Proposed experimental tests of a theory of fine microstructure and the two-well problem. Philos. Trans. Roy. Soc. London Ser. A 338 (1992) 389-450. Zbl0758.73009
  4. [4] C. Carstensen and P. Plechac, Numerical solution of the scalar double-well problem allowing microstructure. Math. Comp. 66 (1997) 997-1026. Zbl0870.65055MR1415798
  5. [5] M. Chipot, Numerical analysis of oscillations in nonconvex problems. Numer. Math. 56 (1991) 747-767. Zbl0712.65063MR1128031
  6. [6] M. Chipot and C. Collins, Numerical approximations in variational problems with potential wells. SIAM J. Numer. Anal. 29 (1992) 1002-1019. Zbl0763.65049MR1173182
  7. [7] M. Chipot, C. Collins and D. Kinderlehrer, Numerical analysis of oscillations in multiple well problems. Numer. Math. 70 (1995) 259-282. Zbl0824.65045MR1330864
  8. [8] C. Collins, Computation and Analysis of Twinning in Crystalline Solids, Ph.D. thesis, University of Minnesota, USA (1990). 
  9. [9] P. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978). Zbl0383.65058MR520174
  10. [10] C. Collins, D. Kinderlehrer and M. Luskin, Numerical approximation of the solution of a variational problem with a double well potential. SIAM J. Numer. Anal. 28 (1991) 321-332. Zbl0725.65067MR1087507
  11. [11] C. Collins and M. Luskin, Optimal order estimates for the finite element approximation of the solution of a nonconvex variational problem. Math. Comp. 57 (1991) 621-637. Zbl0735.65042MR1094944
  12. [12] J. Ericksen, Constitutive theory for some constrained elastic crystals. J. Solids and Structures 22 (1986) 951-964. Zbl0595.73001
  13. [13] J. Ericksen, Some constrained elastic crystals, in Material Instabilites in Continuum Mechanics and Related Problems, J. Ball Ed., Oxford University Press, Oxford (1987) 119-137. Zbl0655.73022MR970522
  14. [14] J. Ericksen, Twinning of crystals I, in Metastability and Incompletely Posed Problems, S. Antman, J. Ericksen, D. Kinderlehrer and I. Muller Eds., Springer-Verlag, New York (1987) 77-96; IMA Volumes in Mathematics and Its Applications, Vol 3. Zbl0638.73006MR870011
  15. [15] M. Gobbert and A. Prohl, A discontinuous finite element method for solving a multi-well problem. Technical Report 1539, IMA (1998) and SIAM J. Numer. Anal. (to be published). Zbl0957.49019
  16. [16] M. Gobbert and A. Prohl, A survey of classical and new finite element methods for the computation of crystalline microstructure. Technical Report 1576, IMA (1998). Zbl1010.74063
  17. [17] P. Gremaud, Numerical analysis of a nonconvex variational problem related to solid-solid phase transitions. SIAM J. Numer. Anal. 31 (1994) 111-127. Zbl0797.65052MR1259968
  18. [18] P. Kloucek, B. Li and M. Luskin, Analysis of a class of nonconforming finite elements for crystalline microstructure. Math. Comp. 67 (1996) 1111-1125. Zbl0903.65081MR1344616
  19. [19] P. Kloucek and M. Luskin, The computation of the dynamics of martensitic microstructure. Contin. Mech. Thermodyn. 6 (1994) 209-240. Zbl0825.73047MR1285922
  20. [20] M. Kruzik, Numerical approach to double well problems. SIAM J. Numer. Anal. 35 (1998) 1833-1849. Zbl0929.49016MR1639950
  21. [21] M. Kruzik, Oscillations, Concentrations and Microstructure Modeling, Ph.D. thesis, Charles University, Prague, Czech Republic (1996). 
  22. [22] B. Li, Analysis and Computation of Martensitic Microstructure, Ph.D. thesis, University of Minnesota, USA (1996). 
  23. [23] B. Li and M. Luskin, Finite element analysis of microstructure for the cubic to tetragonal transformation. SIAM J. Numer. Anal. 35 (1998) 376-392. Zbl0919.49020MR1618484
  24. [24] B. Li and M. Luskin, Nonconforming Finite element approximation of crystalline microstructure. Math. Comp. 67 (1998) 917-946. Zbl0901.73076MR1459391
  25. [25] B. Li and M. Luskin, Approximation of a martensitic laminate with varying volume fractions. RAIRO ModéL Math. Anal. Numér. 33 (1999) 67-87. Zbl0928.74012MR1685744
  26. [26] M. Luskin, Approximation of a laminated microstructure for a rotationally invariant, double well energy density. Numer. Math. 75 (1997) 205-221. Zbl0874.73060MR1421987
  27. [27] M. Luskin, On the computation of crystalline microstructure. Acta Numer. 5 (1996) 191-257. Zbl0867.65033MR1624603

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.