Motion of spirals by crystalline curvature

Hitoshi Imai; Naoyuki Ishimura; Takeo Ushijima

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1999)

  • Volume: 33, Issue: 4, page 797-806
  • ISSN: 0764-583X

How to cite


Imai, Hitoshi, Ishimura, Naoyuki, and Ushijima, Takeo. "Motion of spirals by crystalline curvature." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.4 (1999): 797-806. <>.

author = {Imai, Hitoshi, Ishimura, Naoyuki, Ushijima, Takeo},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {evolution equations; curvature; kinematic energies; local existence; uniqueness; solution},
language = {eng},
number = {4},
pages = {797-806},
publisher = {Dunod},
title = {Motion of spirals by crystalline curvature},
url = {},
volume = {33},
year = {1999},

AU - Imai, Hitoshi
AU - Ishimura, Naoyuki
AU - Ushijima, Takeo
TI - Motion of spirals by crystalline curvature
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 4
SP - 797
EP - 806
LA - eng
KW - evolution equations; curvature; kinematic energies; local existence; uniqueness; solution
UR -
ER -


  1. [1] R. Almgren, Crystalline Saffman-Taylor fingers. SIAM J. Appl. Math. 55 (1995) 1511-1535. Zbl0838.76094MR1358787
  2. [2] S. Angenent and M.E. Gurtin, Multiphase thermodynamics with interfacial structure 2. Evolution of an isothermal interface. Arch. Rational Mech. Anal. 108 (1989) 323-391. Zbl0723.73017MR1013461
  3. [3] C.M. Elliot, A.R. Gardiner and R. Schätzle, Crystalline curvature flow of a graph in a variational setting. Adv. Math. Sci. Appl. 8 (1998) 425-460. Zbl0959.35168MR1623315
  4. [4] T. Fukui and Y. Giga, Motion of a graph by nonsmooth weighted curvature, in World Congress of Nonlinear Analysis '92, Vol. I, V. Lakshmikantham Ed., Walter de Gruyter, Berlin (1996) 47-56. Zbl0860.35061MR1389060
  5. [5] M.E. Gage, On the size of the blow-up set for a quasilinear parabolic equation. Contemp. Math. 127 (1992) 41-58. Zbl0770.35029MR1155408
  6. [6] M.-H. Giga and Y. Giga, Evolving graphs by singular weighted curvature, Arch. Rational Mech. Anal. 141 (1998) 117-198. Zbl0896.35069MR1615520
  7. [7] Y. Giga and M.E. Gurtin, A comparison theorem for crystalline evolution in the plane. Quart. Appl Math. 54 (1996) 727-737. Zbl0862.35047MR1417236
  8. [8] Y. Giga, M.E. Gurtin and J. Matias, On the dynamics of crystalline motion. Japan J. Indust, Appl. Math. 15 (1998) 7-50. Zbl1306.74038MR1610305
  9. [9] P.M. Girão, Convergence of a crystalline algorithm for the motion of a simple closed convex curve by weighted curvature. SIAM J. Numer. Anal. 32 (1995) 886-899. Zbl0830.65150MR1335660
  10. [10] P.M. Girão and R.V. Kohn, Convergence of a crystalline algorithm for the heat equation in one dimension and for the motion of a graph by weighted curvature. Numer. Math. 67 (1994) 41-70. Zbl0791.65063MR1258974
  11. [11] M.E. Gurtin, Thermomechanics of evolving phase boundaries in the plane. Oxford, Clarendon Press (1993). Zbl0787.73004MR1402243
  12. [12] R. Ikota, N. Ishimura and T. Yamaguchi, On the structure of steady solutions for the kinematic model of spiral waves in excitable media. Japan J. Indust. Appl. Math. 15 (1998) 317-330. Zbl0904.92002MR1629103
  13. [13] K. Ishii and H.M. Soner, Regularity and convergence of crystalline motion. Preprint (1996). Zbl0963.35082MR1646732
  14. [14] N. Ishimura, Shape of spiral. Tôhoku Math. J. 50 (1998) 197-202. Zbl0915.35048MR1622050
  15. [15] W. Jahnke and A.T. Winfree, A survey of spiral-wave behaviors in the oregonator model. Internat J, Bifur. Chaos 1 (1991). 445-466. Zbl0900.92066MR1120210
  16. [16] T. Kuroda, Kessyou ha ikiteiru (Crystal is alive). Science Sya, Tokyo (1984). 
  17. [17] A.S. Mikhailov, V.A. Davydov and A.S. Zykov, Complex dynamics of spiral waves and motion of curves. Pkysica D 70 (1994) 1-39. Zbl0807.58043MR1257848
  18. [18] A. Ookawa, Kessyou seicyo (Crystal Growth). Syokabo, Tokyo (1977). 
  19. [19] A.R. Roosen and J.E. Taylor, Modeling crystal growth in a diffusion field using fully faceted interfaces. J. Comput. Phys. 114 (1994) 113-128. Zbl0805.65128MR1286190
  20. [20] P. Rybka, A quasi-steady approximation to an integro-differential model of interface motion. Appl Anal. 56 (1995) 19-34. Zbl0832.35155MR1378009
  21. [21] P. Rybka, A crystalline motion: uniqueness and geometric properties. SIAM J. Appl. Math. 57 (1997) 53-72. Zbl0870.35129MR1429377
  22. [22] I. Sunagawa, K. Narita, P. Bennema and B. van der Hoek, Observation and interpretation of eccentric growth spirals. J. Crystal Growth 42 (1977) 121-126. 
  23. [23] J.E. Taylor, Crystalline variational problem. Bull. Amer. Math. Soc. 84 (1978) 568-588. Zbl0392.49022MR493671
  24. [24] J.E. Taylor, Constructions and conjectures in crystalline nondifferential geometry, in Differential Geometry (A symposium in honour of Manfredo do Carmo) B, Lawson and K, Tenenblat Eds., Longman, Essex (1991) 321-336. Zbl0725.53011MR1173051
  25. [25] J.E. Taylor, Motion of curves by crystalline curvature, including triple junctions and boundary points. Proc. Sympos. Pure. Math. 54 (1993) 417-438. Zbl0823.49028MR1216599
  26. [26] J.E. Taylor, Surface motion due to crystalline surface energy gradient flows, in Elliptic and Parabolic Methods in Geometry, B. Chow, R. Gulliver, S. Levy, J. Sulliva and A.K. Peters Eds., Massachusetts (1996) 145-162. Zbl0915.49024MR1417953
  27. [27] J.J. Tyson and J.P. Keener, Singular perturbation theory of traveling waves in excitable media. Physica D 32 (1988) 327-361. Zbl0656.76018MR980194
  28. [28] T. Ushijima and S. Yazaki, Convergence of a crystalline algorithm for the motion of a closed convex curve by a power of curvature v = kα. Preprint (1997). Zbl0946.65071MR1740769

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.