Motion of spirals by crystalline curvature
Hitoshi Imai; Naoyuki Ishimura; Takeo Ushijima
- Volume: 33, Issue: 4, page 797-806
- ISSN: 0764-583X
Access Full Article
topHow to cite
topImai, Hitoshi, Ishimura, Naoyuki, and Ushijima, Takeo. "Motion of spirals by crystalline curvature." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.4 (1999): 797-806. <http://eudml.org/doc/193947>.
@article{Imai1999,
author = {Imai, Hitoshi, Ishimura, Naoyuki, Ushijima, Takeo},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {evolution equations; curvature; kinematic energies; local existence; uniqueness; solution},
language = {eng},
number = {4},
pages = {797-806},
publisher = {Dunod},
title = {Motion of spirals by crystalline curvature},
url = {http://eudml.org/doc/193947},
volume = {33},
year = {1999},
}
TY - JOUR
AU - Imai, Hitoshi
AU - Ishimura, Naoyuki
AU - Ushijima, Takeo
TI - Motion of spirals by crystalline curvature
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 4
SP - 797
EP - 806
LA - eng
KW - evolution equations; curvature; kinematic energies; local existence; uniqueness; solution
UR - http://eudml.org/doc/193947
ER -
References
top- [1] R. Almgren, Crystalline Saffman-Taylor fingers. SIAM J. Appl. Math. 55 (1995) 1511-1535. Zbl0838.76094MR1358787
- [2] S. Angenent and M.E. Gurtin, Multiphase thermodynamics with interfacial structure 2. Evolution of an isothermal interface. Arch. Rational Mech. Anal. 108 (1989) 323-391. Zbl0723.73017MR1013461
- [3] C.M. Elliot, A.R. Gardiner and R. Schätzle, Crystalline curvature flow of a graph in a variational setting. Adv. Math. Sci. Appl. 8 (1998) 425-460. Zbl0959.35168MR1623315
- [4] T. Fukui and Y. Giga, Motion of a graph by nonsmooth weighted curvature, in World Congress of Nonlinear Analysis '92, Vol. I, V. Lakshmikantham Ed., Walter de Gruyter, Berlin (1996) 47-56. Zbl0860.35061MR1389060
- [5] M.E. Gage, On the size of the blow-up set for a quasilinear parabolic equation. Contemp. Math. 127 (1992) 41-58. Zbl0770.35029MR1155408
- [6] M.-H. Giga and Y. Giga, Evolving graphs by singular weighted curvature, Arch. Rational Mech. Anal. 141 (1998) 117-198. Zbl0896.35069MR1615520
- [7] Y. Giga and M.E. Gurtin, A comparison theorem for crystalline evolution in the plane. Quart. Appl Math. 54 (1996) 727-737. Zbl0862.35047MR1417236
- [8] Y. Giga, M.E. Gurtin and J. Matias, On the dynamics of crystalline motion. Japan J. Indust, Appl. Math. 15 (1998) 7-50. Zbl1306.74038MR1610305
- [9] P.M. Girão, Convergence of a crystalline algorithm for the motion of a simple closed convex curve by weighted curvature. SIAM J. Numer. Anal. 32 (1995) 886-899. Zbl0830.65150MR1335660
- [10] P.M. Girão and R.V. Kohn, Convergence of a crystalline algorithm for the heat equation in one dimension and for the motion of a graph by weighted curvature. Numer. Math. 67 (1994) 41-70. Zbl0791.65063MR1258974
- [11] M.E. Gurtin, Thermomechanics of evolving phase boundaries in the plane. Oxford, Clarendon Press (1993). Zbl0787.73004MR1402243
- [12] R. Ikota, N. Ishimura and T. Yamaguchi, On the structure of steady solutions for the kinematic model of spiral waves in excitable media. Japan J. Indust. Appl. Math. 15 (1998) 317-330. Zbl0904.92002MR1629103
- [13] K. Ishii and H.M. Soner, Regularity and convergence of crystalline motion. Preprint (1996). Zbl0963.35082MR1646732
- [14] N. Ishimura, Shape of spiral. Tôhoku Math. J. 50 (1998) 197-202. Zbl0915.35048MR1622050
- [15] W. Jahnke and A.T. Winfree, A survey of spiral-wave behaviors in the oregonator model. Internat J, Bifur. Chaos 1 (1991). 445-466. Zbl0900.92066MR1120210
- [16] T. Kuroda, Kessyou ha ikiteiru (Crystal is alive). Science Sya, Tokyo (1984).
- [17] A.S. Mikhailov, V.A. Davydov and A.S. Zykov, Complex dynamics of spiral waves and motion of curves. Pkysica D 70 (1994) 1-39. Zbl0807.58043MR1257848
- [18] A. Ookawa, Kessyou seicyo (Crystal Growth). Syokabo, Tokyo (1977).
- [19] A.R. Roosen and J.E. Taylor, Modeling crystal growth in a diffusion field using fully faceted interfaces. J. Comput. Phys. 114 (1994) 113-128. Zbl0805.65128MR1286190
- [20] P. Rybka, A quasi-steady approximation to an integro-differential model of interface motion. Appl Anal. 56 (1995) 19-34. Zbl0832.35155MR1378009
- [21] P. Rybka, A crystalline motion: uniqueness and geometric properties. SIAM J. Appl. Math. 57 (1997) 53-72. Zbl0870.35129MR1429377
- [22] I. Sunagawa, K. Narita, P. Bennema and B. van der Hoek, Observation and interpretation of eccentric growth spirals. J. Crystal Growth 42 (1977) 121-126.
- [23] J.E. Taylor, Crystalline variational problem. Bull. Amer. Math. Soc. 84 (1978) 568-588. Zbl0392.49022MR493671
- [24] J.E. Taylor, Constructions and conjectures in crystalline nondifferential geometry, in Differential Geometry (A symposium in honour of Manfredo do Carmo) B, Lawson and K, Tenenblat Eds., Longman, Essex (1991) 321-336. Zbl0725.53011MR1173051
- [25] J.E. Taylor, Motion of curves by crystalline curvature, including triple junctions and boundary points. Proc. Sympos. Pure. Math. 54 (1993) 417-438. Zbl0823.49028MR1216599
- [26] J.E. Taylor, Surface motion due to crystalline surface energy gradient flows, in Elliptic and Parabolic Methods in Geometry, B. Chow, R. Gulliver, S. Levy, J. Sulliva and A.K. Peters Eds., Massachusetts (1996) 145-162. Zbl0915.49024MR1417953
- [27] J.J. Tyson and J.P. Keener, Singular perturbation theory of traveling waves in excitable media. Physica D 32 (1988) 327-361. Zbl0656.76018MR980194
- [28] T. Ushijima and S. Yazaki, Convergence of a crystalline algorithm for the motion of a closed convex curve by a power of curvature v = kα. Preprint (1997). Zbl0946.65071MR1740769
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.