Displaying similar documents to “Motion of spirals by crystalline curvature”

Motion of spirals by crystalline curvature

Hitoshi Imai, Naoyuki Ishimura, TaKeo Ushijima (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

Modern physics theories claim that the dynamics of interfaces between the two-phase is described by the evolution equations involving the curvature and various kinematic energies. We consider the motion of spiral-shaped polygonal curves by its crystalline curvature, which deserves a mathematical model of real crystals. Exploiting the comparison principle, we show the local existence and uniqueness of the solution.

Two examples of fattening for the curvature flow with a driving force

Giovanni Bellettini, Maurizio Paolini (1994)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

We provide two examples of a regular curve evolving by curvature with a forcing term, which degenerates in a set having an interior part after a finite time.

Motion of spiral-shaped polygonal curves by nonlinear crystalline motion with a rotating tip motion

Tetsuya Ishiwata (2015)

Mathematica Bohemica

Similarity:

We consider a motion of spiral-shaped piecewise linear curves governed by a crystalline curvature flow with a driving force and a tip motion which is a simple model of a step motion of a crystal surface. We extend our previous result on global existence of a spiral-shaped solution to a linear crystalline motion for a power type nonlinear crystalline motion with a given rotating tip motion. We show that self-intersection of the solution curves never occurs and also show that facet extinction...

A computational approach to fractures in crystal growth

Matteo Novaga, Emanuele Paolini (1999)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

In the present paper, we motivate and describe a numerical approach in order to detect the creation of fractures in a facet of a crystal evolving by anisotropic mean curvature. The result appears to be in accordance with the known examples of facet-breaking. Graphical simulations are included.

Convergence of a non-local eikonal equation to anisotropic mean curvature motion. Application to dislocations dynamics

Francesca Da Lio, N. Forcadel, Régis Monneau (2008)

Journal of the European Mathematical Society

Similarity:

We prove the convergence at a large scale of a non-local first order equation to an anisotropic mean curvature motion. The equation is an eikonal-type equation with a velocity depending in a non-local way on the solution itself, which arises in the theory of dislocation dynamics. We show that if an anisotropic mean curvature motion is approximated by equations of this type then it is always of variational type, whereas the converse is true only in dimension two.