Origins, analysis, numerical analysis, and numerical approximation of a forward-backward parabolic problem

A. Kadir Aziz; Donald A. French; Soren Jensen; R. Bruce Kellogg

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1999)

  • Volume: 33, Issue: 5, page 895-922
  • ISSN: 0764-583X

How to cite

top

Aziz, A. Kadir, et al. "Origins, analysis, numerical analysis, and numerical approximation of a forward-backward parabolic problem." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.5 (1999): 895-922. <http://eudml.org/doc/193957>.

@article{Aziz1999,
author = {Aziz, A. Kadir, French, Donald A., Jensen, Soren, Kellogg, R. Bruce},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {heat equation; backward-forward parabolic equations; finite element Galerkin methods; convergence; numerical examples},
language = {eng},
number = {5},
pages = {895-922},
publisher = {Dunod},
title = {Origins, analysis, numerical analysis, and numerical approximation of a forward-backward parabolic problem},
url = {http://eudml.org/doc/193957},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Aziz, A. Kadir
AU - French, Donald A.
AU - Jensen, Soren
AU - Kellogg, R. Bruce
TI - Origins, analysis, numerical analysis, and numerical approximation of a forward-backward parabolic problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 5
SP - 895
EP - 922
LA - eng
KW - heat equation; backward-forward parabolic equations; finite element Galerkin methods; convergence; numerical examples
UR - http://eudml.org/doc/193957
ER -

References

top
  1. [1] A.K. Aziz and J.-L. Liu, A Galerkin method for the forward-backward heat equation. Math. Comp. 56 (1991) 35-44. Zbl0718.65068MR1052085
  2. [2] A.K. Aziz and J.-L. Liu, A weighted least squares method for the backward-forward heat equation. SIAM J. Numer. Anal. 28 (1991) 156-167. Zbl0727.65080MR1083329
  3. [3] M.S. Baouendi and P. Grisvard, Sur une équation d'évolution changeant de type. J. Funct. Anal 2 (1968) 352-367. Zbl0164.12701MR252817
  4. [4] R. Beals, On an equation of mixed type from electron scattering. J. Math. Anal. Appl. 58 (1977) 32-45. Zbl0353.35072MR492921
  5. [5] H.A. Bethe, M.E. Rose and L.P. Smith, The multiple scattering of electrons. Proc. Amer. Philos. Soc. 78 (1938) 573-585. Zbl64.0898.03JFM64.0898.03
  6. [6] W. Bothe, Die Streuabsorption der Elektronenstrahlen (electron scattering). Zeit. Physik 54 (1929) 161-178. Zbl55.0531.03JFM55.0531.03
  7. [7] T. Cebeci, H.B. Keller and P.G. Williams, Separating boundary-layer flow calculations. J. Comput. Physics (1979) 363-378. Zbl0411.76026MR534787
  8. [8] T. Cebeci and K. Stewartson, On the calculation of separation of bubbles. J. Fluid Mech. 133 (1983) 287-296. Zbl0524.76092
  9. [9] P.G. Ciarlet, The Finite Element Methods for Elliptic Problems. North Holland (1980). Zbl0999.65129MR1115235
  10. [10] C.N. Dawson, C.J. Van Duijn and R.E. Grundy, Large time asymptotics in contaminant transport in porous media. SIAM J. Appl. Math. 56 (1996) 965-993. Zbl0862.35012MR1398404
  11. [11] J.A. Franklin and E.R. Rodemich, Numerical analysis of an elliptic-parabolic partial differential equation. SIAM J. Numer. Anal. 5 (1968) 680-716. Zbl0261.65069MR245210
  12. [12] M. Freidlin and H. Weinberger, On a backward-forward parabolic equation and its regularization. J. Differential Equation 105 (1993) 264-295. Zbl0780.35065MR1240397
  13. [13] D.A. French, Continuons Galerkin Finite Element Methods for a Forward-Backward Heat Equation. Numer. Methods Partial Differential Equations 15 (1999) 257-265. Zbl0948.65095MR1674286
  14. [14] D.A. French, Discontinuous Galerkin Finite Element Methods for a Forward-Backward Heat Equation. Appl. Numer. Math. 27 (1998) 1-8. Zbl0931.65101MR1639826
  15. [15] M. Gevrey, Sur certaines équations aux dérivées partielles du type parabolique. Comptes Rendues 154 (1912) 1785-1788. Zbl43.0446.03JFM43.0446.03
  16. [16] M. Gevrey, Sur les équations aux dérivées partielles du type parabolique, IV. J. Math. Pures Appl 10 (1914) 105-137. JFM45.0571.03
  17. [17] Ju.P. Gor'kov, A formula for the solution of a boundary-value problem for the stationary equation of Brownian motion. Dokl. Akad. Nauk SSSR 223 (1975), also Soviet Math. Dokl. 16 (1975) 904-908. Zbl0324.35013MR386033
  18. [18] P.S. Hagan and J.R. Ockendon, Half-range analysis of a counter-current separator. J. Math. Anal. Appl. 160 (1991) 358-378. Zbl0753.76190MR1126123
  19. [19] E. Hopf, Mathematical problems of radiative equilibrium, Cambridge tracts in mathematics and mathematical physics, No. 31. Cambridge University Press (1934). MR183517JFM60.0809.01
  20. [20] J.B. Keller and H.F. Weinberger, Boundary and initial boundary-value problems for separable backward-forward parabolic problems. J. Math. Phys. B 38 (1997) 4343-4353. Zbl0881.35051MR1459662
  21. [21] S. Kepinski, Über die Differentialgleichung . Math. Annal 61 (1905) 397-405. Zbl36.0416.01MR1511354JFM36.0416.01
  22. [22] J.J. Kohn and L. Nirenberg, Degenerate elliptic-parabolic equations of second order. Comm. Pure Appl. Math. 20 (1967) 797-872. Zbl0153.14503MR234118
  23. [23] T. LaRosa, The Propagation of an Electron Beam Through the Solar Corona. Ph.D. thesis, Physics and Astronomy, University of Maryland, College Park (1986). 
  24. [24] T. LaRosa, The spatial structure of a nonthermal electron beam: conditions for stabilization via strong turbulence. Astrophys J. 335 (1988) 425-440. 
  25. [25] J.-L. Lions, Équations différentielles opérationelles et problèmes aux limites. Springer, Berlin (1961). Zbl0098.31101MR153974
  26. [26] J.-L. Liu, Weak residual error estimates for symmetric positive Systems. Numer. Funct. Anal. Optim. 14 (1993) 607-519. Zbl0795.65067MR1248131
  27. [27] J.-L. Liu, A finite difference method for symmetric positive differential equations. Math. Comp, 62 (1994) 105-118. Zbl0797.65059MR1208839
  28. [28] H. Lu, Galerkin and weighted Galerkin methods for the forward-backward heat equation. Numer. Math, 75 (1997) 339-56. Zbl0876.65071MR1427712
  29. [29] H. Lu and Z.-H. Wen, Solution of a forward-baekward heat equation, preprint, Department of Mathematics, University of Nijmegen, NL (1994). Zbl0900.65289
  30. [30] D.B. Melrose, Plasma astrophysics: non-thermal processes in diffuse magnetized plasmas. Vol. 1: The émission, absorption, and transfer of waves in plasmas. Vol. 2: Astrophysical application. Gordon and Breach, New York (1978). 
  31. [31] A.F. Messiter and R.L. Enlow, A model for laminar boundary-layer flow near a separation point, SIAM J. Appl. Math. 25 (1973) 655-670. Zbl0246.76031
  32. [32] W. Myller-Lebedeff, Die Theorie der Integralgleichungen in Anwendung auf einige Reihenentwicklungen. Math. Annal. 66 (1910) 388-416. JFM38.0385.02
  33. [33] K. Nickel, Die Prandtlschen Grenzschichtdifferentialgleichungen als asymptotischer Grenzfall der Navier-Stokesschen und der Eulerschen differentialgleichungen. Arch. Rational Mech. Anal 13 (1963) 1-14. Zbl0115.21004MR148315
  34. [34] O.A. Oleǐnik, Mathematical problems of boundary layer theory. Uspekhi Mat. Nauk 23 (1968) 3-65. Zbl0188.41004MR228849
  35. [35] O.A. Oleǐnik and E.V. Radkevič, Second order equations with nonnegative characteristic form. Plenum Press, New York-London (1973). MR457908
  36. [36] C.M. Pagani, On an initial-boundary value problem for the equation wt = wxx - xwy. Ann. Scuola Norm. Sup. Pisa, Ser. IV 2 (1975) 219-263. Zbl0306.35053MR380115
  37. [37] C.M. Pagani, On forward-backward parabolic equations in bounded domains. Boll. Un. Mat Ita. B (5) 13 (1976) 336-354. Zbl0345.35053MR499718
  38. [38] W.R.C. Phillips and J.T. Ratnanather, The outer region of a turbulent boundary layer, Phys. Fluids A, Fluid dynamics 2 (1990) 427. Zbl0708.76078
  39. [39] J.T. Ratnanather and P.G Daniels, Solution of the thermal boundary layer equations in regions of flow reversal. SIAM J. Appl. Math. 55 (1995) 192-204. Zbl0818.76016MR1313013
  40. [40] L.B. Schiff and J.L. Steger, Numerical simulation of steady supersonic viscous flow. AIAA J. 18 (1980) 1421-1430. Zbl0462.76058MR595898
  41. [41] F.T. Smith, Steady and unsteady boundary-layer separation. Annu. Rev. Fluid Mech 18 (1986) 197-220. Zbl0615.76048MR828790
  42. [42] F.T. Smith and P.W. Duck, Separation of jets or thermal boundary layers from a wall. Quart. J. Mech. Appl. Math. 30 (1977) 143-156. Zbl0381.76031MR452113
  43. [43] K. Stewartson, Multistructural boundary layers on flat plates and related bodies. Adv. in Appl. Mech. 14 (1974) 145-239. 
  44. [44] K. Stewartson, D'Alembert's paradox. SIAM Rev. 23 (1981) 308-343. Zbl0484.76002MR631832
  45. [45] K. Stewartson and P.G. Williams, Self-induced separation. Proc. Royal Soc. Ser. A 312 (1969) 181-206. Zbl0184.52903
  46. [46] V. Vanaja, Numerical solution of a simple Fokker-Planck equation. Appl. Numer. Math. 9 (1992) 533-540. Zbl0756.65145MR1160631
  47. [47] V. Vanaja and R.B. Kellogg, Iterative methods for a forward-baekward heat equation, SIAM J. Numer. Anal. 27 (1990) 622-635. Zbl0708.65082MR1041255
  48. [48] G. Milton Wing, An introduction to transport theory. John Wiley and Sons Inc., New York-London (1962). MR155646

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.