Une méthode nodale appliquée à un problème de diffusion à coefficients généralisés
Abdelkader Laazizi; Nagib Guessous
- Volume: 33, Issue: 5, page 989-1002
- ISSN: 0764-583X
Access Full Article
topHow to cite
topLaazizi, Abdelkader, and Guessous, Nagib. "Une méthode nodale appliquée à un problème de diffusion à coefficients généralisés." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.5 (1999): 989-1002. <http://eudml.org/doc/193962>.
@article{Laazizi1999,
author = {Laazizi, Abdelkader, Guessous, Nagib},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {nodal method; diffusion problem; nuclear reactors; neutron diffusion; finite elements; convergence; numerical examples; error bounds},
language = {fre},
number = {5},
pages = {989-1002},
publisher = {Dunod},
title = {Une méthode nodale appliquée à un problème de diffusion à coefficients généralisés},
url = {http://eudml.org/doc/193962},
volume = {33},
year = {1999},
}
TY - JOUR
AU - Laazizi, Abdelkader
AU - Guessous, Nagib
TI - Une méthode nodale appliquée à un problème de diffusion à coefficients généralisés
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 5
SP - 989
EP - 1002
LA - fre
KW - nodal method; diffusion problem; nuclear reactors; neutron diffusion; finite elements; convergence; numerical examples; error bounds
UR - http://eudml.org/doc/193962
ER -
References
top- [1] I. Babuska, G. Caloz et J.E. Osborn, Special F.E.M, for a class of second order elliptic problems with rough coefficient. SIAM J. Numer. Anal 31 (1994) 945-981. Zbl0807.65114MR1286212
- [2] I. Babuska et J.E. Osbor, F.E.M. for the solution of problem with rough imput data. Lect. Notes Math., Springer-Verlag 1121 (1985) 1-18. Zbl0575.65108MR806382
- [3] S.N. Bernstein, Sur la généralisation du problème de Dirichlet. Math. Annal 69 (1910) 82-136. Zbl41.0427.02MR1511579JFM41.0427.02
- [4] J.H. Bramble et S.R. Hubert, Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation. SIAM J. Numer. Anal. 7 (1970) 113-124. Zbl0201.07803MR263214
- [5] P.G. Hennart, Handbook of numerical analysis, F.E.M, Part II. North-Holland (1991).
- [6] J.P. Hennart, On numerical analysis of analytical nodal methods, Numer. Methods Partial Differential Equations 4 (1986) 233-254. Zbl0647.65088MR1012482
- [7] J.P Hennart, A general family of nodal shemes. SIAM J. Sci Statist. Comput. 7 (1986) 264-28. Zbl0599.65094MR819471
- [8] J.P. Hennart and E.H. Mund, Singularities in the F.E. approximation of two-dimensional diffusion problems.. Nucl Sci. Engng. 62 (1977) 55-68.
- [9] M.A. Moussaoui et A. Ziani, Sur l'approximation des solutions de certains types d'E.D. ou d'E.D.P. à coefficients non réguliers. Anales de l'Enit 4 (1990) 9-35.
- [10] O.A. Ladyzhenskaya et N.N. Oral'tsev, Linear and quasilinear equations. Academic Press, New York (1968).
- [11] R.D. Lawrence, Progress in nodal methods for the solution of the neutron diffusion and transport equation. Prog. Nucl. Energ 17 (1986) 271-301.
- [12] P. Lesaint, On the convergence of Wilson's nonconforming element for solving the elastic problem. Comput. Methods Appl. Mech. Engrg. 7 (1976) 1-16. Zbl0345.65058MR455479
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.