Une méthode nodale appliquée à un problème de diffusion à coefficients généralisés

Abdelkader Laazizi; Nagib Guessous

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1999)

  • Volume: 33, Issue: 5, page 989-1002
  • ISSN: 0764-583X

How to cite

top

Laazizi, Abdelkader, and Guessous, Nagib. "Une méthode nodale appliquée à un problème de diffusion à coefficients généralisés." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.5 (1999): 989-1002. <http://eudml.org/doc/193962>.

@article{Laazizi1999,
author = {Laazizi, Abdelkader, Guessous, Nagib},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {nodal method; diffusion problem; nuclear reactors; neutron diffusion; finite elements; convergence; numerical examples; error bounds},
language = {fre},
number = {5},
pages = {989-1002},
publisher = {Dunod},
title = {Une méthode nodale appliquée à un problème de diffusion à coefficients généralisés},
url = {http://eudml.org/doc/193962},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Laazizi, Abdelkader
AU - Guessous, Nagib
TI - Une méthode nodale appliquée à un problème de diffusion à coefficients généralisés
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 5
SP - 989
EP - 1002
LA - fre
KW - nodal method; diffusion problem; nuclear reactors; neutron diffusion; finite elements; convergence; numerical examples; error bounds
UR - http://eudml.org/doc/193962
ER -

References

top
  1. [1] I. Babuska, G. Caloz et J.E. Osborn, Special F.E.M, for a class of second order elliptic problems with rough coefficient. SIAM J. Numer. Anal 31 (1994) 945-981. Zbl0807.65114MR1286212
  2. [2] I. Babuska et J.E. Osbor, F.E.M. for the solution of problem with rough imput data. Lect. Notes Math., Springer-Verlag 1121 (1985) 1-18. Zbl0575.65108MR806382
  3. [3] S.N. Bernstein, Sur la généralisation du problème de Dirichlet. Math. Annal 69 (1910) 82-136. Zbl41.0427.02MR1511579JFM41.0427.02
  4. [4] J.H. Bramble et S.R. Hubert, Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation. SIAM J. Numer. Anal. 7 (1970) 113-124. Zbl0201.07803MR263214
  5. [5] P.G. Hennart, Handbook of numerical analysis, F.E.M, Part II. North-Holland (1991). 
  6. [6] J.P. Hennart, On numerical analysis of analytical nodal methods, Numer. Methods Partial Differential Equations 4 (1986) 233-254. Zbl0647.65088MR1012482
  7. [7] J.P Hennart, A general family of nodal shemes. SIAM J. Sci Statist. Comput. 7 (1986) 264-28. Zbl0599.65094MR819471
  8. [8] J.P. Hennart and E.H. Mund, Singularities in the F.E. approximation of two-dimensional diffusion problems.. Nucl Sci. Engng. 62 (1977) 55-68. 
  9. [9] M.A. Moussaoui et A. Ziani, Sur l'approximation des solutions de certains types d'E.D. ou d'E.D.P. à coefficients non réguliers. Anales de l'Enit 4 (1990) 9-35. 
  10. [10] O.A. Ladyzhenskaya et N.N. Oral'tsev, Linear and quasilinear equations. Academic Press, New York (1968). 
  11. [11] R.D. Lawrence, Progress in nodal methods for the solution of the neutron diffusion and transport equation. Prog. Nucl. Energ 17 (1986) 271-301. 
  12. [12] P. Lesaint, On the convergence of Wilson's nonconforming element for solving the elastic problem. Comput. Methods Appl. Mech. Engrg. 7 (1976) 1-16. Zbl0345.65058MR455479

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.