Discrete anisotropic curvature flow of graphs

Klaus Deckelnick; Gerhard Dziuk

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1999)

  • Volume: 33, Issue: 6, page 1203-1222
  • ISSN: 0764-583X

How to cite

top

Deckelnick, Klaus, and Dziuk, Gerhard. "Discrete anisotropic curvature flow of graphs." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.6 (1999): 1203-1222. <http://eudml.org/doc/193968>.

@article{Deckelnick1999,
author = {Deckelnick, Klaus, Dziuk, Gerhard},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {error bounds; linear finite element; evolution; curvature flow},
language = {eng},
number = {6},
pages = {1203-1222},
publisher = {Dunod},
title = {Discrete anisotropic curvature flow of graphs},
url = {http://eudml.org/doc/193968},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Deckelnick, Klaus
AU - Dziuk, Gerhard
TI - Discrete anisotropic curvature flow of graphs
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 6
SP - 1203
EP - 1222
LA - eng
KW - error bounds; linear finite element; evolution; curvature flow
UR - http://eudml.org/doc/193968
ER -

References

top
  1. [1] S. B. Angenent and M. E. Gurtin, Multiphase thermomechanics with interfacial structure 2, evolution of an isothermal interface Arch. Rational Mech. Anal. 108 (1989) 323-391. Zbl0723.73017MR1013461
  2. [2] G. Bellettini and M. Paolini, Anisotropic motion by mean curvature in the context of Finsler geometry Hokkaido Math. J. 25 (1996) 537-566. Zbl0873.53011MR1416006
  3. [3] P. Clément, Approximation by finite element functions using local regularization RAIRO Anal. Numér. 9 (1975) 77-84. Zbl0368.65008MR400739
  4. [4] K. Deckelnick and G. Dziuk, Convergence of a finite element method for non-parametric mean curvature flow. Numer. Math. 72 (1995) 197-222. Zbl0838.65103MR1362260
  5. [5] M. Dobrowolski, L∞-convergence of linear finite element approximation to nonlinear parabolic problems. SIAM J. Numer. Anal. 17 (1980) 663-674. Zbl0449.65077MR588752
  6. [6] Y. Giga, Motion of a graph by convexified energy. Hokkaido Math. J. 23 (1994) 185-212. Zbl0824.35051MR1263830
  7. [7] P. M. Girão and R. V. Kohn, Convergence of a crystalline algorithm for the heat equation in one dimension and for the motion of a graph by weighted curvature. Numer. Math. 67 (1994) 41-70. Zbl0791.65063MR1258974
  8. [8] G. Huisken, Non-parametric mean curvature evolution with boundary conditions. J. Differential Equations 77 (1989) 369-378. Zbl0686.34013MR983300
  9. [9] C. Johnson and V. Thomeé, Error estimates for a finite element approximation of a minimal surface. Math. Comp. 29 (1975) 343-349. Zbl0302.65086MR400741
  10. [10] O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'tseva, Linear and quasilinear equations of parabolic type. Amer. Math. Soc, Providence, R. I. (1968). 
  11. [11] G. A. Lieberman, The first initial-boundary value problem for quasilinear second order parabolic equations. Ann. Scuola. Norm. Su. Pisa. Cl. Sci. Ser. IV. 8 (1986) 347-387. Zbl0655.35047MR881097
  12. [12] V. I. Oliker and N. N. Uraltseva, Evolution of nonparametric surfaces with speed depending on curvature, II. The mean curvature case Preprint. Zbl0808.53004MR1193345
  13. [13] M. Rumpf, et al., GRAPE, Graphics Programming. Environment Report 8, SFB 256, Bonn (1990). 
  14. [14] J. E. Taylor, J. W. Cahn and C. A. Handwerker, Geometric models of crystal growth. Acta Metall. Mater. 40 1443-1474 (1992). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.