Discrete anisotropic curvature flow of graphs
Klaus Deckelnick; Gerhard Dziuk
- Volume: 33, Issue: 6, page 1203-1222
- ISSN: 0764-583X
Access Full Article
topHow to cite
topDeckelnick, Klaus, and Dziuk, Gerhard. "Discrete anisotropic curvature flow of graphs." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.6 (1999): 1203-1222. <http://eudml.org/doc/193968>.
@article{Deckelnick1999,
author = {Deckelnick, Klaus, Dziuk, Gerhard},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {error bounds; linear finite element; evolution; curvature flow},
language = {eng},
number = {6},
pages = {1203-1222},
publisher = {Dunod},
title = {Discrete anisotropic curvature flow of graphs},
url = {http://eudml.org/doc/193968},
volume = {33},
year = {1999},
}
TY - JOUR
AU - Deckelnick, Klaus
AU - Dziuk, Gerhard
TI - Discrete anisotropic curvature flow of graphs
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 6
SP - 1203
EP - 1222
LA - eng
KW - error bounds; linear finite element; evolution; curvature flow
UR - http://eudml.org/doc/193968
ER -
References
top- [1] S. B. Angenent and M. E. Gurtin, Multiphase thermomechanics with interfacial structure 2, evolution of an isothermal interface Arch. Rational Mech. Anal. 108 (1989) 323-391. Zbl0723.73017MR1013461
- [2] G. Bellettini and M. Paolini, Anisotropic motion by mean curvature in the context of Finsler geometry Hokkaido Math. J. 25 (1996) 537-566. Zbl0873.53011MR1416006
- [3] P. Clément, Approximation by finite element functions using local regularization RAIRO Anal. Numér. 9 (1975) 77-84. Zbl0368.65008MR400739
- [4] K. Deckelnick and G. Dziuk, Convergence of a finite element method for non-parametric mean curvature flow. Numer. Math. 72 (1995) 197-222. Zbl0838.65103MR1362260
- [5] M. Dobrowolski, L∞-convergence of linear finite element approximation to nonlinear parabolic problems. SIAM J. Numer. Anal. 17 (1980) 663-674. Zbl0449.65077MR588752
- [6] Y. Giga, Motion of a graph by convexified energy. Hokkaido Math. J. 23 (1994) 185-212. Zbl0824.35051MR1263830
- [7] P. M. Girão and R. V. Kohn, Convergence of a crystalline algorithm for the heat equation in one dimension and for the motion of a graph by weighted curvature. Numer. Math. 67 (1994) 41-70. Zbl0791.65063MR1258974
- [8] G. Huisken, Non-parametric mean curvature evolution with boundary conditions. J. Differential Equations 77 (1989) 369-378. Zbl0686.34013MR983300
- [9] C. Johnson and V. Thomeé, Error estimates for a finite element approximation of a minimal surface. Math. Comp. 29 (1975) 343-349. Zbl0302.65086MR400741
- [10] O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'tseva, Linear and quasilinear equations of parabolic type. Amer. Math. Soc, Providence, R. I. (1968).
- [11] G. A. Lieberman, The first initial-boundary value problem for quasilinear second order parabolic equations. Ann. Scuola. Norm. Su. Pisa. Cl. Sci. Ser. IV. 8 (1986) 347-387. Zbl0655.35047MR881097
- [12] V. I. Oliker and N. N. Uraltseva, Evolution of nonparametric surfaces with speed depending on curvature, II. The mean curvature case Preprint. Zbl0808.53004MR1193345
- [13] M. Rumpf, et al., GRAPE, Graphics Programming. Environment Report 8, SFB 256, Bonn (1990).
- [14] J. E. Taylor, J. W. Cahn and C. A. Handwerker, Geometric models of crystal growth. Acta Metall. Mater. 40 1443-1474 (1992).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.