A class of time discrete schemes for a phase-field system of Penrose-Fife type

Olaf Klein

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1999)

  • Volume: 33, Issue: 6, page 1261-1292
  • ISSN: 0764-583X

How to cite

top

Klein, Olaf. "A class of time discrete schemes for a phase-field system of Penrose-Fife type." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.6 (1999): 1261-1292. <http://eudml.org/doc/193971>.

@article{Klein1999,
author = {Klein, Olaf},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {time-discrete schemes; initial-boundary value problem; phase-field system},
language = {eng},
number = {6},
pages = {1261-1292},
publisher = {Dunod},
title = {A class of time discrete schemes for a phase-field system of Penrose-Fife type},
url = {http://eudml.org/doc/193971},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Klein, Olaf
TI - A class of time discrete schemes for a phase-field system of Penrose-Fife type
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 6
SP - 1261
EP - 1292
LA - eng
KW - time-discrete schemes; initial-boundary value problem; phase-field system
UR - http://eudml.org/doc/193971
ER -

References

top
  1. [1] H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in Function Spaces, Differential Operators and Nonlinear Analysis, H.-J. Schmeisser and H. Triebel Eds, B. G. Teubner (1993). Zbl0810.35037MR1242579
  2. [2] V. Barbu, Nonlinear semigroups and differential equations in Banach spaces. Noordhoff International Publishing (1976). Zbl0328.47035MR390843
  3. [3] J.F. Blowey and C.M. Elliott, A phase-field model with a double obstacle potential, in Motion by mean curvature and related topics, G. Buttazzo and A. Visintin Eds., De Gruyter, New York (1994) 1-22. Zbl0809.35168MR1277388
  4. [4] H. Brézis, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, in Contributions to Nonlinear Functional Analysis, E.H. Zarantonello Ed., Academic Press, London (1971) 101-155. Zbl0278.47033MR394323
  5. [5] P. Colli and Ph. Laurençot, Weak solutions to the Penrose-Fife phase field model for a class of admissible heat flux laws. Physica D 111 (1998) 311-334. Zbl0929.35062MR1601442
  6. [6] P. Colli, P. Laurençot and J. Sprekels, Global solution to the Penrose-Fife phase field model with special heat flux laws, in Variations of domain and free-boundary problems in solid mechanics (Paris, 1997), Kluwer Acad. Publ., Dordrecht (1999) 181-188. MR1672241
  7. [7] P. Colli, Error estimates for nonlinear Stefan problems obtained as asymptotic limits of a Penrose-Fife model. Z. Angew. Math. Mech. 76 (1996) 409-412. Zbl0890.35162MR1372256
  8. [8] P. Colli and J. Sprekels, Stefan problems and the Penrose-Fife phase field model. Adv. Math. Sci. Appl. 7 (1997) 911-934. Zbl0892.35158MR1476282
  9. [9] P. Colli and J. Sprekels, Weak solution to some Penrose-Fife phase-field systems with temperature-dependent memory. J. Differential Equations 142 (1998) 54-77. Zbl0897.45012MR1492877
  10. [10] A. Damlamian and N. Kenmochi, Evolution equations associated with non-isothermal phase transitions, in Functional analysis and global analysis (Quezon City, 1996), Springer, Singapore (1997) 62-77. Zbl0912.35085MR1658041
  11. [11] R. Glowinski, Numerical Methods for Nonlinear Variational Problems. Springer (1984). Zbl0536.65054
  12. [12] W. Horn, Ph. Laurençot and J. Sprekels, Global solutions to a Penrose-Fife phase-field model under flux boundary conditions for the inverse temperature. Math. Methods Appl. Sci. 19 (1996) 1053-1072. Zbl0859.35049MR1402815
  13. [13] W. Horn, A numerical scheme for the one-dimensional Penrose-Fife model for phase transitions. Adv. Math. Sci. Appl. 2 (1993) 457-483. Zbl0824.65138MR1239269
  14. [14] W. Horn and J. Sprekels, A numerical method for a singular system of parabolic equations in two space dimensions (unpublished manuscript). 
  15. [15] W. Horn, J. Sprekels and S. Zheng, Global existence of smooth solutions to the Penrose-Fife model for Ising ferromagnets. Adv. Math. Sci. Appl. 6 (1996) 227-241. Zbl0858.35053MR1385769
  16. [16] O. Klein, Existence and approximation results for phase-field systems of Penrose-Fife type and Stefan problems. Ph.D. thesis, Humboldt University, Berlin (1997). 
  17. [17] O. Klein, A semidiscrete scheme for a Penrose-Fife system and some Stefan problems in R3. Adv. Math. Sci. Appl. 7 (1997) 491-523. Zbl0883.65103MR1454679
  18. [18] N. Kenmochi and M. Kubo, Weak solutions of nonlinear systems for non-isothermal phase transitions. Adv. Math. Sci. Appl. 9 (1999) 499-521. Zbl0930.35037MR1690439
  19. [19] N. Kenmochi and M. Niczgódka, Systems of nonlinear parabolic equations for phase change problems. Adv. Math. Sci. Appl. 3 (1993/94) 89-185. Zbl0827.35015MR1287926
  20. [20] Ph. Laurençot, Étude de quelques problèmes aux dérivées partielles non linéaires. Ph.D. thesis, University of Franche-Comté, France (1993). 
  21. [21] Ph. Laurençot, Solutions to a Penrose-Fife model of phase-field type. J. Math. Anal. Appl. 185 (1994) 262-274. Zbl0819.35159MR1283056
  22. [22] Ph. Laurençot, Weak solutions to a Penrose-Fife model for phase transitions. Adv. Math. Sci. Appl. 5 (1995) 117-138. Zbl0829.35148MR1325962
  23. [23] Ph. Laurençot, Weak solutions to a Penrose-Fife model with Fourier law for the temperature. J. Math. Anal. Appl. 219 (1998) 331-343. Zbl0919.35137MR1606330
  24. [24] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod Gauthier-Villars, Paris (1969). Zbl0189.40603MR259693
  25. [25] M. Marcus and V.J. Mizel, Absolute continuity on tracks and mappings of Sobolev spaces. Arch. Rational Mech. Anal. 45 (1972) 294-320. Zbl0236.46033MR338765
  26. [26] M. Marcus and V.J. Mizel, Complete characterization of functions which act, via superposition, on Sobolev spaces. Trans. Amer. Math. Soc. 251 (1979) 187-218. Zbl0417.46035MR531975
  27. [27] M. Niezgódka and J. Sprekels, Convergent numerical approximations of the thermomechanical phase transitions in shape memory alloys. Numer. Math. 58 (1991) 759-778. Zbl0715.65099MR1090259
  28. [28] R.H. Nochetto, G. Savaré and C. Verdi, A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Comm. Pure Appl. Math. (to appear). Zbl1021.65047MR1737503
  29. [29] O. Penrose and P.C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions. Physica D 43 (1990) 44-62. Zbl0709.76001MR1060043
  30. [30] J. Sprekels and S. Zheng, Global smooth solutions to a thermodynamically consistent model of phase-field type in higher space dimensions. J. Math. Anal. Appl. 176 (1993) 200-223. Zbl0804.35063MR1222165
  31. [31] E. Zeidler, Nonlinear Functional Analysis and its Applications Il/A: Linear Monotone Operators. Springer (1990). Zbl0684.47029MR1033497
  32. [32] S. Zheng, Nonlinear parabolic equations and hyperbolic-parabolic coupled systems, in Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 76, Longman (1995). Zbl0835.35003MR1375458

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.