Stabilization of Galerkin approximations of transport equations by subgrid modeling

Jean-Luc Guermond

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1999)

  • Volume: 33, Issue: 6, page 1293-1316
  • ISSN: 0764-583X

How to cite

top

Guermond, Jean-Luc. "Stabilization of Galerkin approximations of transport equations by subgrid modeling." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 33.6 (1999): 1293-1316. <http://eudml.org/doc/193972>.

@article{Guermond1999,
author = {Guermond, Jean-Luc},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {subgrid modeling; stabilization; transport equations; artificial diffusion; stability; convergence; streamline diffusion method},
language = {eng},
number = {6},
pages = {1293-1316},
publisher = {Dunod},
title = {Stabilization of Galerkin approximations of transport equations by subgrid modeling},
url = {http://eudml.org/doc/193972},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Guermond, Jean-Luc
TI - Stabilization of Galerkin approximations of transport equations by subgrid modeling
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1999
PB - Dunod
VL - 33
IS - 6
SP - 1293
EP - 1316
LA - eng
KW - subgrid modeling; stabilization; transport equations; artificial diffusion; stability; convergence; streamline diffusion method
UR - http://eudml.org/doc/193972
ER -

References

top
  1. [1] A. A. O. Ammi and M. Maron, Nonlinear Galerkin methods and mixed finite elements : two-grid algorithms for the Navier-Stokes equations Numer. Math. 68 (1994) 189-213. Zbl0811.76035MR1283337
  2. [2] D. N. Arnold, F. Brezzi and M. Fortin, A stable finite element for the Stokes equations Calcolo 21 (1984) 337-344. Zbl0593.76039MR799997
  3. [3] P. Azerad and G. Pousin, Inégalité de Poincaré courbe pour le traitement variationnel de l'équation de transport C. R.Acad.Sci. Paris Sér. I 322 (1996) 721-727. Zbl0852.76073MR1387427
  4. [4] C. Baiocchi, F. Brezzi and L. P. Franca, Virtual bubbles and Galerkin-least-square type methods (Ga. L. S.) Comput. Methods Appl. Mech. Engrg 105 (1993) 125-141. Zbl0772.76033MR1222297
  5. [5] C. Bardos, Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels, théorèmes d'approximation, application à l'équation de transport Ann. Sci. École Norm. Sup. Sér. IV 3 (1970) 185-233. Zbl0202.36903MR274925
  6. [6] M. Barton-Smith, Mémoire de DEA. Analyse Numérique, Paris XI, Internal report LIMSI (1999). 
  7. [7] F. Brezzi, M. O. Bristeau, L. Franca, M. Mallet and G. Rogé, Relationship between stabihzed finite element methods and the Galerkin method with bubble functions. Comput. Methods Appl. Mech. Engrg. 96 (1992) 117-129. Zbl0756.76044MR1159592
  8. [8] A. N. Brooks and T. J. R. Hughes, Streamline Upwind/Petrov-Galerkin formulations for convective dominated flows with particular emphasis on the incompressible Navier-Stokes equations Comput. Methods. Appl. Mech. Engrg 32 (1982) 199-259. Zbl0497.76041MR679322
  9. [9] M. Crouzeix and P. -A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations RAIRO Anal. Numér 7 (1973) 33-76. Zbl0302.65087MR343661
  10. [10] R. Codina, Comparison of some finite element methods for solving the diffusion-convection-reaction equations. Comput. Methods Appl. Mech. Engrg. 156 (1997) 185-210. Zbl0959.76040MR1622508
  11. [11] J. Douglas and T. F. Russell, Numerical methods for convection dominated diffusion problems based on combinig the method of characteristics with finite element methods or finite difference method SIAM J. Numer. Anal. 19 (1982) 871-885. Zbl0492.65051MR672564
  12. [12] R. Dautray and J. -L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques Masson, Paris (1984). Zbl0642.35001
  13. [13] C. Foias, O. P. Manley and R. TemamModelization of the interaction of small and large eddies in two dimensional turbulent flows, Math. Modelling Numer. Anal. 22 (1988) 93-114. Zbl0663.76054
  14. [14] M. Fortin, An analysis of the convergence of mixed Finite Element Methods RAIRO Anal. Numér. 11 (1977) 341-354. Zbl0373.65055MR464543
  15. [15] L. P. Franca and C. Farhat, Bubble functions prompt unusual stabilized finite element methods Comput. Methods Appl. Mech. Engrg. 123 (1994) 299-308. Zbl1067.76567MR1339376
  16. [16] M. Germano, U. Piomelh, P. Moin and W. H. Cabot, A dynamic subgrid-scale eddy viscosity model Phys. Fluids A 3 (1991) 1760-1765. Zbl0825.76334
  17. [17] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations Springer Ser. Comput Math. 5, Springer-Verlag (1986). Zbl0585.65077MR851383
  18. [18] J. -L. Guermond, Stabilisation par viscosité de sous-maille pour l'approximation de Galerkin des opérateurs monotones C. R. Acad. Sci. Paris Sér. I 328 (1999) 617-622. Zbl0933.65058MR1680045
  19. [19] T. J. R. Hughes, Multiscale phenomena Green's function, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized formulations Comput. Methods Appl. Mech. Engrg. 127 (1995) 387-401. Zbl0866.76044MR1365381
  20. [20] C. Johnson, U. Navert, J. Pitkaranta, Finite element methods for linear hyperbolic equations Comput. Methods Appl. Mech. Engrg. 45 (1984) 285-312. Zbl0526.76087MR759811
  21. [21] O. A. Ladyzhenskaya, Modification of the Navier-Stokes equations for large velocity gradients Boundary Value Problems of Mathematical Physics and Related Aspects of Function Theory, Consultants bureau, New-York (1970). 
  22. [22] M. Manon and R. Temam, Nonlinear Galerkin methods : the finite element case Numer. Math. 57 (1990) 1-22. Zbl0702.65081MR1057121
  23. [23] T. E. Peterson, A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation. SIAM J. Numer. Anal 28 (1991) 133-140. Zbl0729.65085MR1083327
  24. [24] O. Pironneau, On the transport-diffusion algorithm and its applications to the Navier Stokes equations. Numer. Math. 38 (1982) 309-332. Zbl0505.76100MR654100
  25. [25] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Springer Ser. Comput. Math. 23, Springer-Verlag (1994). Zbl0803.65088MR1299729
  26. [26] J. Smagorinsky, General circulation experiments with the primitive equations. I. The basic experiments. J. Atmospheric Sei. 2 (1963) 680-689. 
  27. [27] E. Süli, Convergence and non-linear stability of the Lagrange-Galerkin method for the Navier-Stokes equations Numer, Math. 3 (1988) 459-483. Zbl0637.76024MR951325
  28. [28] B. García-Archilla, J. Novo and E. S. Titi, Postprocessing the Galerkin method : a novel approach to Approximate Inertial Manifolds. SIAM J. Numer. Anal. 35 (1998) 941-972. Zbl0914.65105MR1619914
  29. [29] G. Zhou, How accurate is the streamline diffusion finite element method ? Math. Comp. 66 (1997) 31-44. Zbl0854.65094MR1370859

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.