A singular perturbation problem in a system of nonlinear Schrödinger equation occurring in Langmuir turbulence

Cédric Galusinski

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2000)

  • Volume: 34, Issue: 1, page 109-125
  • ISSN: 0764-583X

How to cite

top

Galusinski, Cédric. "A singular perturbation problem in a system of nonlinear Schrödinger equation occurring in Langmuir turbulence." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.1 (2000): 109-125. <http://eudml.org/doc/193973>.

@article{Galusinski2000,
author = {Galusinski, Cédric},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {existence of limit; Schrödinger system; Langmuir turbulence; plasma},
language = {eng},
number = {1},
pages = {109-125},
publisher = {Dunod},
title = {A singular perturbation problem in a system of nonlinear Schrödinger equation occurring in Langmuir turbulence},
url = {http://eudml.org/doc/193973},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Galusinski, Cédric
TI - A singular perturbation problem in a system of nonlinear Schrödinger equation occurring in Langmuir turbulence
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 1
SP - 109
EP - 125
LA - eng
KW - existence of limit; Schrödinger system; Langmuir turbulence; plasma
UR - http://eudml.org/doc/193973
ER -

References

top
  1. [1] L. Bergé and T. Colin, A singular perturbation problem for an envelope equation in plasma physics. Physica D 84 (1995) 437-459. Zbl0884.35097MR1320826
  2. [2] T. Colin, On the Cauchy problem for a nonlocal, nonlinear Schrödinger equation occurring in plasma Physics. Differential and Integral Equations 6 (1993) 1431-1450. Zbl0780.35104MR1235204
  3. [3] R.O. Dendy, Plasma dynamics. Oxford University Press, New York (1990). 
  4. [4] J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. Parts I, II. J. Funct. Anal. 32 (1979) 1-32, 33-71; Zbl0396.35029MR533219
  5. J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. Part III Ann. Inst. H. Poincaré A 28 (1978) 287-316. Zbl0397.35012MR498408
  6. [5] J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Schrödinger equation revisited. Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985) 309-402. Zbl0586.35042MR801582
  7. [6] E.M. Stein, Singular Integrals and Differentiability properties of Functions. Princeton University Press, Princeton, New Jersey (1970). Zbl0207.13501MR290095

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.