A singular perturbation problem in a system of nonlinear Schrödinger equation occurring in Langmuir turbulence
- Volume: 34, Issue: 1, page 109-125
- ISSN: 0764-583X
Access Full Article
topHow to cite
topGalusinski, Cédric. "A singular perturbation problem in a system of nonlinear Schrödinger equation occurring in Langmuir turbulence." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.1 (2000): 109-125. <http://eudml.org/doc/193973>.
@article{Galusinski2000,
author = {Galusinski, Cédric},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {existence of limit; Schrödinger system; Langmuir turbulence; plasma},
language = {eng},
number = {1},
pages = {109-125},
publisher = {Dunod},
title = {A singular perturbation problem in a system of nonlinear Schrödinger equation occurring in Langmuir turbulence},
url = {http://eudml.org/doc/193973},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Galusinski, Cédric
TI - A singular perturbation problem in a system of nonlinear Schrödinger equation occurring in Langmuir turbulence
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 1
SP - 109
EP - 125
LA - eng
KW - existence of limit; Schrödinger system; Langmuir turbulence; plasma
UR - http://eudml.org/doc/193973
ER -
References
top- [1] L. Bergé and T. Colin, A singular perturbation problem for an envelope equation in plasma physics. Physica D 84 (1995) 437-459. Zbl0884.35097MR1320826
- [2] T. Colin, On the Cauchy problem for a nonlocal, nonlinear Schrödinger equation occurring in plasma Physics. Differential and Integral Equations 6 (1993) 1431-1450. Zbl0780.35104MR1235204
- [3] R.O. Dendy, Plasma dynamics. Oxford University Press, New York (1990).
- [4] J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. Parts I, II. J. Funct. Anal. 32 (1979) 1-32, 33-71; Zbl0396.35029MR533219
- J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. Part III Ann. Inst. H. Poincaré A 28 (1978) 287-316. Zbl0397.35012MR498408
- [5] J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Schrödinger equation revisited. Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985) 309-402. Zbl0586.35042MR801582
- [6] E.M. Stein, Singular Integrals and Differentiability properties of Functions. Princeton University Press, Princeton, New Jersey (1970). Zbl0207.13501MR290095
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.